SICHERHEITSDATENBLATT

Gemäss Verordnung (EG) Nr. 1907/2006, wie geändert durch Verordnung (EU) Nr. 2020/878

NOVAFILLER

ABSCHNITT 1: Bezeichnung des Stoffs beziehungsweise des Gemischs und des Unternehmens

1.1. Produktidentifikator

: NOVAFILLER Produktname

Registrierungsnummer REACH : Nicht anwendbar (Gemisch)

Produkttyp REACH : Gemisch

1.2. Relevante identifizierte Verwendungen des Stoffs oder Gemischs und Verwendungen, von denen abgeraten wird

1.2.1 Relevante identifizierte Verwendungen

Farhe

1.2.2 Verwendungen, von denen abgeraten wird

Keine Verwendungen, von denen abgeraten wird bekannt

1.3. Einzelheiten zum Lieferanten, der das Sicherheitsdatenblatt bereitstellt

Lieferant des Sicherheitsdatenblattes

Novatio*

Industrielaan 5B

B-2250 Olen

2 +32 14 25 76 40

₼ +32 14 22 02 66

info@novatio.be

*NOVATIO is a registered trademark of Novatech International N.V.

Hersteller des Produktes

Novatech International N.V.

Industrielaan 5B

B-2250 Olen

2 +32 14 85 97 37

4 +32 14 85 97 38

info@novatech.be

1.4. Notrufnummer

24 Std/24 Std (Telefonische Beratung: Englisch, Französisch, Deutsch, Niederländisch) :

+32 14 58 45 45 (BIG)

ABSCHNITT 2: Mögliche Gefahren

2.1. Einstufung des Stoffs oder Gemischs

Nach den Kriterien der Verordnung (EG) Nr. 1272/2008 als gefährlich eingestuft

Klasse	Kategorie	Gefahrenhinweise
Aerosol	Kategorie 1	H222: Extrem entzündbares Aerosol.
Aerosol	Kategorie 1	H229: Behälter steht unter Druck: Kann bei Erwärmung bersten.
Eye Irrit.	Kategorie 2	H319: Verursacht schwere Augenreizung.
STOT SE	Kategorie 3	H336: Kann Schläfrigkeit und Benommenheit verursachen.
Aquatic Chronic	Kategorie 3	H412: Schädlich für Wasserorganismen, mit langfristiger Wirkung.

2.2. Kennzeichnungselemente

Enthält: Aceton; n-Butylacetat. Signalwort Gefahr

o.g	ocidiii
H-Sätze	
H222	Extrem entzündbares Aerosol.
H229	Behälter steht unter Druck: Kann bei Erwärmung bersten.
H319	Verursacht schwere Augenreizung.
H336	Kann Schläfrigkeit und Benommenheit verursachen.
H412	Schädlich für Wasserorganismen, mit langfristiger Wirkung.
P-Sätze	
P210	Von Hitze, heißen Oberflächen, Funken, offenen Flammen und anderen Zündquellen fernhalten. Nicht rauchen.

Nicht gegen offene Flamme oder andere Zündquelle sprühen.

Hergestellt von: Brandweerinformatiecentrum voor gevaarlijke stoffen vzw (BIG)

Technische Schoolstraat 43 A, B-2440 Geel http://www.big.be © BIG vzw

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25 ·16239-001-de-DE

Überarbeitungsnummer: 0300 Produktnummer: 51293

P251 Nicht durchstechen oder verbrennen, auch nicht nach Gebrauch.

P280 Augenschutz tragen.

P304 + P340 BEI EINATMEN: Die Person an die frische Luft bringen und für ungehinderte Atmung sorgen.
P410 + P412 Vor Sonnenbestrahlung schützen und nicht Temperaturen über 50 °C/122 °F aussetzen.

Ergänzenden Informationen

EUH066 Wiederholter Kontakt kann zu spröder oder rissiger Haut führen.

EUH211 Achtung! Beim Sprühen können gefährliche lungengängige Tröpfchen entstehen. Aerosol oder Nebel nicht einatmen.

2.3. Sonstige Gefahren

Gas/Dampf breitet sich am Boden aus: Zündgefahr

ABSCHNITT 3: Zusammensetzung/Angaben zu Bestandteilen

3.1. Stoffe

Nicht anwendbar

3.2. Gemische

Name REACH Registrierungsnr.	CAS-Nr. EG-Nr.	Konz. (C)	Einstufung gemäß CLP	Fußnote	Bemerkung	M-Faktoren und ATE
Aceton 01-2119471330-49	67-64-1 200-662-2	20% <c<25%< td=""><td>Flam. Liq. 2; H225 Eye Irrit. 2; H319 STOT SE 3; H336 EUH066</td><td>(1)(2)(10)</td><td>Bestandteil</td><td></td></c<25%<>	Flam. Liq. 2; H225 Eye Irrit. 2; H319 STOT SE 3; H336 EUH066	(1)(2)(10)	Bestandteil	
n-Butylacetat 01-2119485493-29	123-86-4 204-658-1	12.5% <c<20%< td=""><td>Flam. Liq. 3; H226 STOT SE 3; H336 EUH066</td><td>(1)(2)(10)</td><td>Bestandteil</td><td></td></c<20%<>	Flam. Liq. 3; H226 STOT SE 3; H336 EUH066	(1)(2)(10)	Bestandteil	
2-Methoxy-1-methylethylacetat 01-2119475791-29	108-65-6 203-603-9	2.5% <c<5%< td=""><td>Flam. Liq. 3; H226</td><td>(1)(2)(10)</td><td>Bestandteil</td><td></td></c<5%<>	Flam. Liq. 3; H226	(1)(2)(10)	Bestandteil	
Butan-1-ol 01-2119484630-38	71-36-3 200-751-6	C<2.5%	Flam. Liq. 3; H226 Acute Tox. 4; H302 Eye Dam. 1; H318 Skin Irrit. 2; H315 STOT SE 3; H335 STOT SE 3; H336	(1)(2)(10)	Bestandteil	
Trizinkbis(orthophosphat) 01-2119485044-40	7779-90-0 231-944-3	C<1%	Aquatic Acute 1; H400 Aquatic Chronic 1; H410	(1)	Bestandteil	M: 1 (Akut, ECHA (Registrierungsdo ssier)) M: 1 (Chronisch, ECHA (Registrierungsdo ssier))
2-Propanol 01-2119457558-25	67-63-0 200-661-7	C<2.5%	Flam. Liq. 2; H225 Eye Irrit. 2; H319 STOT SE 3; H336	(1)(2)(10)	Bestandteil	,,
Titandioxid; [in Pulverform mit mindestens 1 % Partikel mit aerodynamischem Durchmesser ≤ 10 μm]	13463-67-7 236-675-5	5% <c<10%< td=""><td>Carc. 2; H351</td><td>(1)(2)</td><td>Bestandteil</td><td></td></c<10%<>	Carc. 2; H351	(1)(2)	Bestandteil	
Dimethylether 01-2119472128-37	115-10-6 204-065-8	12.5% <c<20%< td=""><td>Flam. Gas 1A; H220 Press. Gas - Verflüssigtes Gas; H280</td><td>(1)(2)(10)</td><td>Treibgas</td><td></td></c<20%<>	Flam. Gas 1A; H220 Press. Gas - Verflüssigtes Gas; H280	(1)(2)(10)	Treibgas	
Propan 01-2119486944-21	74-98-6 200-827-9	5% <c<10%< td=""><td>Flam. Gas 1A; H220 Press. Gas - Verflüssigtes Gas; H280</td><td>(1)(2)(10)</td><td>Treibgas</td><td></td></c<10%<>	Flam. Gas 1A; H220 Press. Gas - Verflüssigtes Gas; H280	(1)(2)(10)	Treibgas	
Butan	106-97-8 203-448-7	2.5% <c<5%< td=""><td>Flam. Gas 1A; H220 Press. Gas - Verflüssigtes Gas; H280</td><td>(1)(2)(10)(21)</td><td>Treibgas</td><td></td></c<5%<>	Flam. Gas 1A; H220 Press. Gas - Verflüssigtes Gas; H280	(1)(2)(10)(21)	Treibgas	
Isobutan 01-2119485395-27	75-28-5 200-857-2	2.5% <c<5%< td=""><td>Flam. Gas 1A; H220 Press. Gas - Verflüssigtes Gas; H280</td><td>(1)(2)(10)(21)</td><td>Treibgas</td><td></td></c<5%<>	Flam. Gas 1A; H220 Press. Gas - Verflüssigtes Gas; H280	(1)(2)(10)(21)	Treibgas	

⁽¹⁾ Zu vollständigem Wortlaut der H- und EUH-Sätze: siehe Punkt 16

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08

Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 2 / 27

 $^{(2) \,} Stoff, \, f \ddot{u}r \, den \, ein \, gemeinschaftlicher \, Grenzwert \, f \ddot{u}r \, die \, Exposition \, am \, Arbeitzplatz \, gilt \, den \, ein \, gemeinschaftlicher \, Grenzwert \, f \ddot{u}r \, die \, Exposition \, am \, Arbeitzplatz \, gilt \, den \, ein \, ein$

⁽¹⁰⁾ Unterliegt den Beschränkungen in Anhang XVII der Verordnung (EG) Nr. 1907/2006

^{(21) 1,3-}Butadien <0.1%

ABSCHNITT 4: Erste-Hilfe-Maßnahmen

4.1. Beschreibung der Erste-Hilfe-Maßnahmen

Allgemeine Maßnahmen:

(eigene) Sicherheit beachten. Wenn möglich, sich der betroffenen Person nähern und Vitalfunktionen überprüfen. Im Falle von Verletzung und/oder Vergiftung die Europäische Notfallnummer 112 anrufen. Symptome beginnend mit den am meisten lebensbedrohenden Verletzungen und Störungen behandeln. Betroffene Person unter Beobachtung halten, Möglichkeit verzögerter Symptome.

Nach Einatmen:

Das Opfer an die frische Luft bringen. Im Falle von Atemproblemen ärztlichen/medizinischen Rat einholen.

Nach Hautkontakt

Wenn möglich, Chemikalie durch Aufwischen/Trocknen entfernen. Anschließend sofort mit (lauwarmem) Wasser spülen/duschen. Bei anhaltender Reizung ärztlichen/medizinischen Rat einholen.

Nach Augenkontakt:

Sofort mit viel Wasser spülen. Eventuell Vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weiter ausspülen. Bei anhaltender Reizung ärztlichen/medizinischen Rat einholen.

Nach Verschlucken:

Mund mit Wasser spülen. Bei Unwohlsein ärztlichen/medizinischen Rat einholen. Nicht darauf warten, dass Symptome auftreten, um Giftinformationszentrum zu konsultieren.

4.2. Wichtigste akute und verzögert auftretende Symptome und Wirkungen

4.2.1 Akute Symptome

Nach Einatmen:

EXPOSITION AN HOHEN KONZENTRATIONEN: ZNS-Depression. Schwindel. Schläfrigkeit.

Nach Hautkontakt:

NACH LANGFRISTIGER EXPOSITION/KONTAKT: Trockene Haut. Rissige Haut.

Nach Augenkontakt:

Reizung des Augengewebes.

Nach Verschlucken:

Keine Wirkungen bekannt.

4.2.2 Verzögert auftretende Symptome

Keine Wirkungen bekannt.

4.3. Hinweise auf ärztliche Soforthilfe oder Spezialbehandlung

Wenn anwendbar und vorhanden, ist das unten angegeben.

ABSCHNITT 5: Maßnahmen zur Brandbekämpfung

5.1. Löschmittel

5.1.1 Geeignete Löschmittel:

Kleiner Brand: Wasser, Schnell wirkendes ABC-Löschpulver, Schnell wirkendes BC-Löschpulver, Schnell wirkender CO2-Löscher.

Großer Brand: Wasser in Massen.

5.2. Besondere vom Stoff oder Gemisch ausgehende Gefahren

Bei Verbrennung werden CO und CO2 gebildet und Bildung von Metalloxiden.

5.3. Hinweise für die Brandbekämpfung

5.3.1 Maßnahmen:

Geschlossene Behälter mit Wasser kühlen, falls sie dem Feuer ausgesetzt sind. Physikalische Explosionsgefahr: aus Deckung kühlen/löschen. Hitzegefährdete Ladung nicht versetzen. Nach Kühlung bleibt physikalische Explosionsgefahr bestehen. Mit umweltgefährdendem Löschwasser rechnen. Wasser sparsam einsetzen, wenn möglich auffangen/eindämmen.

5.3.2 Besondere Schutzausrüstungen für die Brandbekämpfung:

Handschuhe (EN 374). Dichtschließende Schutzbrille (EN 166). Schutzkleidung (EN 14605 oder EN 13034). Bei Erhitzung/Verbrennung: umluftunabhängiges Atemschutzgerät (EN 136 + EN 137).

ABSCHNITT 6: Maßnahmen bei unbeabsichtigter Freisetzung

6.1. Personenbezogene Vorsichtsmaßnahmen, Schutzausrüstungen und in Notfällen anzuwendende Verfahren

Motore abstellen und nicht rauchen. Kein offenes Feuer und keine Funken. Funkenfreie und explosionsgeschützte Geräte und Leuchten.

6.1.1 Schutzausrüstungen für nicht für Notfälle geschultes Personal

Siehe Punkt 8.2

Überarbeitungsgrund: 3.2; 9; 12; 15

6.1.2 Schutzausrüstungen für Einsatzkräfte

Handschuhe (EN 374). Dichtschließende Schutzbrille (EN 166). Schutzkleidung (EN 14605 oder EN 13034).

Geeignete Schutzkleidung

Siehe Punkt 8.2

6.2. Umweltschutzmaßnahmen

Ausgelaufene Flüssigkeit eindämmen.

6.3. Methoden und Material für Rückhaltung und Reinigung

Verschüttete Flüssigkeit mit Absorptionsmittel aufnehmen. Absorbiertes Produkt in verschließbaren Behältern sammeln. Verschütteten Feststoff/Reste sorgfältig sammeln. Nicht wegspülen mit Wasser. Sammelgut an Hersteller/zuständige Stelle abgeben. Nach der Arbeit Kleidung und Ausrüstung reinigen.

Überarbeitungsnummer: 0300 Produktnummer: 51293 3 / 27

Datum der Erstellung: 2011-07-08
Datum der Überarbeitung: 2020-11-25

6.4. Verweis auf andere Abschnitte

Siehe Punkt 13.

ABSCHNITT 7: Handhabung und Lagerung

Die in diesem Abschnitt enthaltenen Informationen sind eine allgemeine Beschreibung. Wenn anwendbar und vorhanden, werden die Expositionsszenarien in den Anhang aufgenommen. Sie müssen immer zum Thema gehörende Expositionsszenarien gebrauchen, welche ihren identifizierten Verwendungen entsprechen.

7.1. Schutzmaßnahmen zur sicheren Handhabung

Funkenfreie/explosionsgeschützte Geräte/Leuchten verwenden. Von offenen Flammen/Wärmequellen fernhalten. Von Zündquellen/Funken fernhalten. Maßnahmen gegen elektrostatische Aufladungen treffen. Gas/Dampf schwerer als Luft bei 20°C. Übliche Hygiene befolgen. Verschmutzte Kleidung sofort ausziehen.

7.2. Bedingungen zur sicheren Lagerung unter Berücksichtigung von Unverträglichkeiten

7.2.1 Bedingungen für eine sichere Lagerung:

Lagerungstemperatur: < 50 °C. An einem kühlen Ort aufbewahren. Vor direkter Sonneneinstrahlung schützen. An einem trockenen Ort aufbewahren. Behälter an einem gut gelüfteten Ort aufbewahren. Feuerfester Lagerraum. Den gesetzlichen Vorschriften entsprechen.

7.2.2 Fernhalten von:

Wärmequellen, Zündquellen.

7.2.3 Geeignetes Verpackungsmaterial:

Druckgaspackung.

7.2.4 Ungeeignetes Verpackungsmaterial:

Keine Daten vorhanden

7.3. Spezifische Endanwendungen

Wenn anwendbar und vorhanden, werden die Expositionsszenarien in den Anhang aufgenommen. Hinweise des Herstellers beachten.

ABSCHNITT 8: Begrenzung und Überwachung der Exposition/Persönliche Schutzausrüstungen

8.1. Zu überwachende Parameter

8.1.1 Exposition am Arbeitsplatz

a) Grenzwerte für die berufsbedingte Exposition

Die Grenzwerte werden unten aufgeführt, soweit diese verfügbar und anwendbar sind.

EU

2-Methoxy-1-methylethylacetat	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Arbeitsplatz-Richtgrenzwert)	50 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Arbeitsplatz-Richtgrenzwert)	275 mg/m ³
	Kurzzeitwert (Arbeitsplatz-Richtgrenzwert)	100 ppm
	Kurzzeitwert (Arbeitsplatz-Richtgrenzwert)	550 mg/m ³
Aceton	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Arbeitsplatz-Richtgrenzwert)	500 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Arbeitsplatz-Richtgrenzwert)	1210 mg/m ³
Dimethylether	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Arbeitsplatz-Richtgrenzwert)	1000 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Arbeitsplatz-Richtgrenzwert)	1920 mg/m³
n-Butylacetat	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Arbeitsplatz-Richtgrenzwert)	50 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Arbeitsplatz-Richtgrenzwert)	241 mg/m ³
	Kurzzeitwert (Arbeitsplatz-Richtgrenzwert)	150 ppm
	Kurzzeitwert (Arbeitsplatz-Richtgrenzwert)	723 mg/m ³

Belgien

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 4 / 27

Datum der Erstellung: 2011-07-08

Acétate de 2-(1-méthoxy)propyle	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	50 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	275 mg/m ³
	Kurzzeitwert	100 ppm
	Kurzzeitwert	550 mg/m ³
Acétate de n-butyle	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	50 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	238 mg/m ³
	Kurzzeitwert	150 ppm
	Kurzzeitwert	712 mg/m ³
Acétone	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	500 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	1210 mg/m ³
	Kurzzeitwert	1000 ppm
	Kurzzeitwert	2420 mg/m ³
Alcool isopropylique	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	200 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	500 mg/m ³
	Kurzzeitwert	400 ppm
	Kurzzeitwert	1000 mg/m ³
Alcool n-butylique	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	20 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	62 mg/m³
Butane, tous isomères: iso-butane	Kurzzeitwert	980 ppm
	Kurzzeitwert	2370 mg/m ³
Butane, tous isomères: n-butane	Kurzzeitwert	980 ppm
	Kurzzeitwert	2370 mg/m ³
Hydrocarbures aliphatiques sous forme gazeuse: (Alcanes C1-C3)	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	1000 ppm
Oxyde de diméthyle	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	1000 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	1920 mg/m³
Titane (dioxyde de)	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h	10 mg/m ³

die Niederlande

uie Mederiande		
1-Methoxy-2-propylacetaat	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Öffentlicher Arbeitsplatz-Richtgrenzwert)	100 ppm
1-methoxy-2-propylacetaat	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Öffentlicher Arbeitsplatz-Richtgrenzwert)	550 mg/m ³
Aceton	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Öffentlicher Arbeitsplatz-Richtgrenzwert)	501 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Öffentlicher Arbeitsplatz-Richtgrenzwert)	1210 mg/m ³
	Kurzzeitwert (Öffentlicher Arbeitsplatz-Richtgrenzwert)	1002 ppm
	Kurzzeitwert (Öffentlicher Arbeitsplatz-Richtgrenzwert)	2420 mg/m ³
Dimethylether	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Öffentlicher Arbeitsplatz-Richtgrenzwert)	496 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Öffentlicher Arbeitsplatz-Richtgrenzwert)	950 mg/m ³
	Kurzzeitwert (Öffentlicher Arbeitsplatz-Richtgrenzwert)	783 ppm
	Kurzzeitwert (Öffentlicher Arbeitsplatz-Richtgrenzwert)	1500 mg/m ³

Frankreich

Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VRC: Valeur réglementaire contraignante)	50 ppm
Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VRC:	275 mg/m³
Valeur réglementaire contraignante)	
Kurzzeitwert (VRC: Valeur réglementaire contraignante)	100 ppm
Kurzzeitwert (VRC: Valeur réglementaire contraignante)	550 mg/m ³
Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VL: Valeur non réglementaire indicative)	150 ppm
Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VL: Valeur non réglementaire indicative)	710 mg/m ³
Kurzzeitwert (VL: Valeur non réglementaire indicative)	200 ppm
Kurzzeitwert (VL: Valeur non réglementaire indicative)	940 mg/m³
Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VRC: Valeur réglementaire contraignante)	500 ppm
Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VRC: Valeur réglementaire contraignante)	1210 mg/m ³
Kurzzeitwert (VRC: Valeur réglementaire contraignante)	1000 ppm
Kurzzeitwert (VRC: Valeur réglementaire contraignante)	2420 mg/m ³
Kurzzeitwert (VL: Valeur non réglementaire indicative)	400 ppm
Kurzzeitwert (VL: Valeur non réglementaire indicative)	980 mg/m³
Kurzzeitwert (VL: Valeur non réglementaire indicative)	50 ppm
Kurzzeitwert (VL: Valeur non réglementaire indicative)	150 mg/m ³
	Valeur réglementaire contraignante) Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VRC: Valeur réglementaire contraignante) Kurzzeitwert (VRC: Valeur réglementaire contraignante) Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VL: Valeur non réglementaire indicative) Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VL: Valeur non réglementaire indicative) Kurzzeitwert (VL: Valeur non réglementaire indicative) Kurzzeitwert (VL: Valeur non réglementaire indicative) Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VRC: Valeur réglementaire contraignante) Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VRC: Valeur réglementaire contraignante) Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VRC: Valeur réglementaire contraignante) Kurzzeitwert (VRC: Valeur réglementaire contraignante) Kurzzeitwert (VRC: Valeur réglementaire contraignante) Kurzzeitwert (VL: Valeur non réglementaire indicative) Kurzzeitwert (VL: Valeur non réglementaire indicative)

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 5 / 27

ſ	V	N	N	ΙΔ	F	LE	R
	W	u	·v			ᄔ	\mathbf{n}

n-Butane	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VL: Valeur non réglementaire indicative)	800 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VL: Valeur non réglementaire indicative)	1900 mg/m ³
Oxyde de diméthyle	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VRI: Valeur réglementaire indicative)	1000 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VRI: Valeur réglementaire indicative)	1920 mg/m³
Titane (dioxyde de), en Ti	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (VL: Valeur non réglementaire indicative)	10 mg/m ³

Deutschland

2-Methoxy-1-methylethylacetat	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	50 ppm
	900)	
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	270 mg/m ³
	900)	
Aceton	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	500 ppm
	900)	
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	1200 mg/m ³
	900)	,
Butan	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	1000 ppm
	900)	2000 pp
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	2400 mg/m ³
	900)	2-100 1116/111
Butan-1-ol	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	100 ppm
, dan 1 01	900)	Too ppiii
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	310 mg/m ³
	900)	310 mg/m
Non akhu dakh au		1000
Dimethylether	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS 900)	1000 ppm
	,	1000 / 3
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	1900 mg/m ³
	900)	
sobutan	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	1000 ppm
	900)	
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	2400 mg/m ³
	900)	
n-Butylacetat	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	62 ppm
	900)	
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	300 mg/m ³
	900)	
Propan	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	1000 ppm
	900)	
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	1800 mg/m ³
	900)	
Propan-2-ol	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	200 ppm
•	900)	
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TRGS	500 mg/m ³
	900)	
	[= = = <i>j</i>	1

UK

UK		
1-Methoxypropyl acetate	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	50 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	274 mg/m ³
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	100 ppm
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	548 mg/m ³
Acetone	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	500 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	1210 mg/m ³
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	1500 ppm
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	3620 mg/m ³
Butan-1-ol	Kurzzeitwert (Workplace exposure limit (EH40/2005))	50 ppm
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	154 mg/m ³
Butane	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	600 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	1450 mg/m³
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	750 ppm
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	1810 mg/m³
Butyl acetate	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	150 ppm

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 6 / 27

Butyl acetate	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	724 mg/m ³
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	200 ppm
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	966 mg/m³
Dimethyl ether	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	400 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	766 mg/m³
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	500 ppm
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	958 mg/m ³
Propan-2-ol	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	400 ppm
	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	999 mg/m³
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	500 ppm
	Kurzzeitwert (Workplace exposure limit (EH40/2005))	1250 mg/m ³
Titanium dioxide respirable	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	4 mg/m³
Titanium dioxide total inhalable	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (Workplace exposure limit (EH40/2005))	10 mg/m³

USA (TLV-ACGIH)

,		
2-propanol	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TLV - Adopted Value)	200 ppm
	Kurzzeitwert (TLV - Adopted Value)	400 ppm
Acetone	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TLV - Adopted Value)	250 ppm
	Kurzzeitwert (TLV - Adopted Value)	500 ppm
Butane, isomers	Kurzzeitwert (TLV - Adopted Value)	1000 ppm
Butyl acetates, all isomers	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TLV - Adopted Value)	50 ppm
	Kurzzeitwert (TLV - Adopted Value)	150 ppm
n-Butanol	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TLV - Adopted Value)	20 ppm
Titanium dioxide	Zeitlich gewichteter durchschnittlicher Expositionsgrenzwert 8 h (TLV - Adopted Value)	10 mg/m ³

b) Nationale biologische Grenzwerte

Die Grenzwerte werden unten aufgeführt, soweit diese verfügbar und anwendbar sind.

Deutschland

Aceton (Aceton)	Urin: expositionsende, bzw. schichtende	80 mg/l	
Butan-1-ol (1-Butanol) (Butan-1-ol (1-Butanol) (nach Hydrolyse))	Urin: expositionsende, bzw. schichtende	10 mg/g Kreatinin	
Butan-1-ol (1-Butanol) (Butan-1-ol (1-Butanol) (nach Hydrolyse))	Urin: vor nachfolgender schicht	2 mg/g Kreatinin	
Propan-2-ol (Aceton)	Urin: expositionsende, bzw. schichtende	25 mg/l	
Propan-2-ol (Aceton)	Vollblut: expositionsende, bzw. schichtende	25 mg/l	
Vitamin K-Antagonisten (Quick-Wert)	Vollblut: keine beschränkung	Reduktion auf nicht weniger als 70%	Ableitung des BGW als Höchstwert wegen akut toxischer Effekte

USA (BEI-ACGIH)

2-Propanol (Acetone)	Urine: end of shift at end of workweek	40 mg/L	Background, Nonspecific
Acetone (Acetone)	Urine: end of shift	25 mg/L	Nonspecific

8.1.2 Verfahren zur Probenahme

Arbeitsstoff	Test	Nummer
1-Methoxy-2-Propyl Acetate	OSHA	99
Acetone (ketones 1)	NIOSH	1300
Acetone (ketones I)	NIOSH	2555
Acetone (organic and inorganic gases by Extractive FTIR)	NIOSH	3800
Acetone (Volatile Organic compounds)	NIOSH	2549
ACETONE and METHYL ETHYL KETONE in urine	NIOSH	8319
Acetone	OSHA	69
Butanol (Volatile Organic compounds)	NIOSH	2549
Butyl acetate (Volatile Organic compounds)	NIOSH	2549
Butyl Alcohol	OSHA	7
Isopropanol (Volatile Organic compounds)	NIOSH	2549
Isopropyl Alcohol (Alcohols I)	NIOSH	1400
Isopropyl Alcohol	OSHA	109
n-Butyl Acetate (Esters I)	NIOSH	1450
n-Butyl Acetate	OSHA	1009

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 7 / 27

Arbeitsstoff	Test	Nummer
n-Butyl Alcohol (Alcohols Combined)	NIOSH	1405
n-Butyl Alcohol (Alcohols II)	NIOSH	1401
Propylene glycol monomethyl ether acetate (glycol ethers)	NIOSH	2554
TiO2	NIOSH	7302
TiO2	NIOSH	7304
Zinc & Cpds (as Zn)	NIOSH	7030

8.1.3 Anwendbare Grenzwerte bei der vorgesehenen Verwendung

Die Grenzwerte werden unten aufgeführt, soweit diese verfügbar und anwendbar sind.

8.1.4 Schwellenwerte

DNEL/DMEL - Arbeitnehmer

Aceton

Schwellenwert (DNEL/DMEL)	Тур	Wert	Bemerkung
DNEL	Systemische Langzeitwirkungen, Inhalation	1210 mg/m³	
	Akute lokale Wirkungen, Inhalation	2420 mg/m ³	
	Systemische Langzeitwirkungen, dermal	186 mg/kg bw/Tag	

n-Butylacetat

Schwellenwert (DNEL/DMEL)	Тур	Wert	Bemerkung
DNEL	Systemische Langzeitwirkungen, Inhalation	300 mg/m ³	
	Akute systemische Wirkungen, Inhalation	600 mg/m³	
	Lokale Langzeitwirkungen, Inhalation	300 mg/m ³	
	Akute lokale Wirkungen, Inhalation	600 mg/m³	
	Systemische Langzeitwirkungen, dermal	11 mg/kg bw/Tag	
	Akute systemische Wirkungen, dermal	11 mg/kg bw/Tag	

2-Methoxy-1-methylethylacetat

Schwellenwert (DNEL/DMEL)	Тур	Wert	Bemerkung
DNEL	Systemische Langzeitwirkungen, Inhalation	275 mg/m³	
	Akute lokale Wirkungen, Inhalation	550 mg/m³	
	Systemische Langzeitwirkungen, dermal	796 mg/kg bw	

Butan-1-ol

Schwellenwert (DNEL/DMEL)	Тур	Wert	Bemerkung
DNEL		310 mg/m ³	
 rizinkhic/orthonhocnhot)		•	

<u>Trizinkbis(orthophosphat)</u>

Schwellenwert (DNEL/DMEL)	Тур	Wert	Bemerkung
DNEL	Systemische Langzeitwirkungen, Inhalation	5 mg/m³	
	Systemische Langzeitwirkungen, dermal	83 mg/kg bw/Tag	

2-Propanol

Schwellenwert (DNEL/DMEL)	Тур	Wert	Bemerkung
DNEL	Systemische Langzeitwirkungen, Inhalation	500 mg/m³	
	Systemische Langzeitwirkungen, dermal	888 mg/kg bw/Tag	

DNEL/DMEL - Allgemeinbevölkerung

<u>Aceton</u>

Schwellenwert (DNEL/DMEL)	Тур	Wert	Bemerkung
DNEL	Systemische Langzeitwirkungen, Inhalation	200 mg/m³	
	Systemische Langzeitwirkungen, dermal	62 mg/kg bw/Tag	
	Systemische Langzeitwirkungen, oral	62 mg/kg bw/Tag	

n-Butylacetat

Schwellenwert (DNEL/DMEL)	Тур	Wert	Bemerkung
DNEL	Systemische Langzeitwirkungen, Inhalation	35.7 mg/m³	
	Akute systemische Wirkungen, Inhalation	300 mg/m ³	
	Lokale Langzeitwirkungen, Inhalation		
	Akute lokale Wirkungen, Inhalation	300 mg/m ³	
	Systemische Langzeitwirkungen, dermal	6 mg/kg bw/Tag	
	Akute systemische Wirkungen, dermal	6 mg/kg bw/Tag	
	Systemische Langzeitwirkungen, oral	2 mg/kg bw/Tag	
	Akute systemische Wirkungen, oral	2 mg/kg bw/Tag	

2-Methoxy-1-methylethylacetat

Schwellenwert (DNEL/DMEL)	Тур	Wert	Bemerkung
DNEL Systemische Langzeitwirkungen, Inhalation		33 mg/m ³	
	Lokale Langzeitwirkungen, Inhalation	33 mg/m ³	
	Systemische Langzeitwirkungen, dermal	320 mg/kg bw	
	Systemische Langzeitwirkungen, oral	36 mg/kg bw	

Butan-1-ol

Schwellenwert (DNEL/DMEL)	Тур	Wert	Bemerkung
DNEL Systemische Langzeitwirkungen, Inhalation		55.357 mg/m³	
Lokale Langzeitwirkungen, Inhalation		155 mg/m³	
Systemische Langzeitwirkungen, dermal 3.125		3.125 mg/kg bw/Tag	
Systemische Langzeitwirkungen, oral		1.562 mg/kg bw/Tag	

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 8 / 27

T	thonhocnhat)

Schwellenwert (DNEL/DMEL)	Тур	Wert	Bemerkung
DNEL	Systemische Langzeitwirkungen, Inhalation	2.5 mg/m ³	
	Systemische Langzeitwirkungen, dermal	83 mg/kg bw/Tag	
	Systemische Langzeitwirkungen, oral	0.83 mg/kg bw/Tag	

2-Propanol

Schwellenwert (DNEL/DMEL)	Тур	Wert	Bemerkung
DNEL	Systemische Langzeitwirkungen, Inhalation	89 mg/m³	
	Systemische Langzeitwirkungen, dermal	319 mg/kg bw/Tag	
	Systemische Langzeitwirkungen, oral	26 mg/kg bw/Tag	

PNEC Aceton

Medien	Wert	Bemerkung
Süßwasser	10.6 mg/l	
Meerwasser	1.06 mg/l	
Süßwasser (intermittierende Freisetzung)	21 mg/l	
STP	100 mg/l	
Süßwassersediment	30.4 mg/kg Sediment dw	
Meerwassersediment	3.04 mg/kg Sediment dw	
Boden	29.5 mg/kg Boden dw	

n-Butylacetat

Medien	Wert	Bemerkung
Süßwasser	0.18 mg/l	
Meerwasser	0.018 mg/l	
Süßwasser (intermittierende Freisetzung)	0.36 mg/l	
STP	35.6 mg/l	
Süßwassersediment	0.981 mg/kg Sediment dw	
Meerwassersediment	0.098 mg/kg Sediment dw	
Boden	0.09 mg/kg Boden dw	

2-Methoxy-1-methylethylacetat

Medien	Wert	Bemerkung
Süßwasser	0.635 mg/l	
Meerwasser	0.064 mg/l	
Süßwasser (intermittierende Freisetzung)	6.35 mg/l	
STP	100 mg/l	
Süßwassersediment	3.29 mg/kg Sediment dw	
Meerwassersediment	0.329 mg/kg Sediment dw	
Boden	0.29 mg/kg Boden dw	

Butan-1-ol

Medien	Wert	Bemerkung
Süßwasser	0.082 mg/l	
Meerwasser	0.008 mg/l	
Süßwasser (intermittierende Freisetzung)	2.25 mg/l	
STP	2476 mg/l	
Süßwassersediment	0.324 mg/kg Sediment dw	
Meerwassersediment	0.032 mg/kg Sediment dw	
Boden	0.017 mg/kg Boden dw	

<u>Trizinkbis(orthophosphat)</u>

Medien	Wert	Bemerkung
Süßwasser	20.6 μg/l	
Meerwasser	6.1 μg/l	
STP	100 μg/l	
Süßwassersediment	117.8 mg/kg Sediment dw	
Meerwassersediment	56.5 mg/kg Sediment dw	
Boden	35.6 mg/kg Boden dw	

2-Propanol

Medien	Wert	Bemerkung
Süßwasser	140.9 mg/l	
Süßwasser (intermittierende Freisetzung)	140.9 mg/l	
Meerwasser	140.9 mg/l	
STP	2251 mg/l	
Süßwassersediment	552 mg/kg Sediment dw	
Meerwassersediment	552 mg/kg Sediment dw	
Boden	28 mg/kg Boden dw	
Oral	160 mg/kg Nahrung	

8.1.5 Control banding
Wenn anwendbar und vorhanden, ist das unten angegeben.

8.2. Begrenzung und Überwachung der Exposition

Überarbeitungsgrund: 3.2; 9; 12; 15 Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 9 / 27

Die in diesem Abschnitt enthaltenen Informationen sind eine allgemeine Beschreibung. Wenn anwendbar und vorhanden, werden die Expositionsszenarien in den Anhang aufgenommen. Sie müssen immer zum Thema gehörende Expositionsszenarien gebrauchen, welche ihren identifizierten Verwendungen entsprechen.

8.2.1 Geeignete technische Steuerungseinrichtungen

Funkenfreie/explosionsgeschützte Geräte/Leuchten verwenden. Von offenen Flammen/Wärmequellen fernhalten. Von Zündquellen/Funken fernhalten. Maßnahmen gegen elektrostatische Aufladungen treffen. Regelmäßige Konzentrationsmessungen in der Luft vornehmen.

8.2.2 Individuelle Schutzmaßnahmen, zum Beispiel persönliche Schutzausrüstung

Übliche Hygiene befolgen. Bei der Arbeit nicht essen, trinken, rauchen.

a) Atemschutz:

Vollmaske mit Filtertyp A bei Konz. in der Luft > Expositionsgrenzwert.

b) Handschutz:

Schutzhandschuhe gegen Chemikalien (EN 374).

Materialauswahl	Gemessene Durchbruchzeit	Dicke	Schutzgrad	Bemerkung
Butylkautschuk	> 480 Minuten	0.4 mm	Klasse 6	

c) Augenschutz:

Dichtschließende Schutzbrille (EN 166).

d) Hautschutz:

Schutzkleidung (EN 14605 oder EN 13034).

8.2.3 Begrenzung und Überwachung der Umweltexposition:

Siehe Punkt 6.2, 6.3 und 13

ABSCHNITT 9: Physikalische und chemische Eigenschaften

9.1. Angaben zu den grundlegenden physikalischen und chemischen Eigenschaften

Erscheinungsform	Aerosol
Geruch	Lösemittelgeruch
Geruchsschwelle	Keine Daten in der Literatur vorhanden
Farbe	Beige
Partikelgröße	Nicht anwendbar (Aerosol)
Explosionsgrenzen	1.2 - 26.2 Vol % ; Flüssigkeit
Entzündbarkeit	Extrem entzündbares Aerosol.
Log Kow	Nicht anwendbar (Gemisch)
Dynamische Viskosität	Nicht anwendbar (Aerosol)
Kinematische Viskosität	Nicht anwendbar (Aerosol)
Schmelzpunkt	Nicht anwendbar (Aerosol)
Siedepunkt	Nicht anwendbar (Aerosol)
Relative Dampfdichte	Keine Daten in der Literatur vorhanden
Dampfdruck	4000 hPa ; 20 °C ; Flüssigkeit
Löslichkeit	Wasser ; unlöslich ; Flüssigkeit
Relative Dichte	0.80 ; 20 °C
Absolute Dichte	800 kg/m³ ; 20 °C
Zersetzungstemperatur	Keine Daten in der Literatur vorhanden
Selbstentzündungstemperatur	Nicht anwendbar (Aerosol)
Flammpunkt	Nicht anwendbar (Aerosol)
pH	Nicht anwendbar (Aerosol)

9.2. Sonstige Angaben

Verdampfungsgeschwindigkeit	Keine Daten in der Literatur vorhanden
Explosionsgefahr	Nicht eingestuft
Oxidierende Eigenschaften	Nicht eingestuft

ABSCHNITT 10: Stabilität und Reaktivität

10.1. Reaktivität

Mögliche Entzündung durch Funken. Gas/Dampf breitet sich am Boden aus: Zündgefahr.

10.2. Chemische Stabilität

Stabil unter Normalbedingungen.

10.3. Möglichkeit gefährlicher Reaktionen

Keine Daten vorhanden.

10.4. Zu vermeidende Bedingungen

Vorsorgemaßnahmen

Funkenfreie/explosionsgeschützte Geräte/Leuchten verwenden. Von offenen Flammen/Wärmequellen fernhalten. Von Zündquellen/Funken fernhalten. Maßnahmen gegen elektrostatische Aufladungen treffen.

10.5. Unverträgliche Materialien

Keine Daten vorhanden.

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08

Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 10 / 27

10.6. Gefährliche Zersetzungsprodukte

Bei Verbrennung werden CO und CO2 gebildet und Bildung von Metalloxiden.

ABSCHNITT 11: Toxikologische Angaben

11.1. Angaben zu den Gefahrenklassen im Sinne der Verordnung (EG) Nr. 1272/2008

11.1.1 Prüfungsergebnisse

Akute Toxizität

NOVAFILLER

Keine (experimentellen) Daten zum Gemisch vorhanden Beurteilung beruht auf den relevanten Bestandteilen

Expositionsweg	Parameter	Methode	Wert	Expositionszeit	Spezies	Wertbestimmung	Bemerkung
Oral	LD50		5800 mg/kg		Ratte (weiblich)	Experimenteller	
						Wert	
Dermal	LD50		> 15800 mg/kg bw	24 Stdn	Kaninchen	Beweiskraft	
					(männlich)		
Inhalation (Dämpfe)	LC50		76 mg/l	4 Stdn	Ratte (weiblich)	Beweiskraft	
					(männlich)		

n-Butylacetat

Expositionsweg	Parameter	Methode	Wert	Expositionszeit	Spezies	Wertbestimmung	Bemerkung
Oral	LD50	Äquivalent mit OECD 423	10760 mg/kg bw - 12789 mg/kg bw		Ratte (männlich / weiblich)	Experimenteller Wert	
Dermal	LD50	Äquivalent mit OECD 402	> 14112 mg/kg bw		l	Experimenteller Wert	
Inhalation (Aerosol)	LC50	OECD 403	0.74 mg/l			Experimenteller Wert	

2-Methoxy-1-methylethylacetat

Expositionsweg	Parameter	Methode	Wert	Expositionszeit	Spezies	Wertbestimmung	Bemerkung
Oral	LD50	Äquivalent mit	6190 mg/kg bw		Ratte (männlich /	Experimenteller	
		OECD 401			weiblich)	Wert	
Dermal	LD50	Äquivalent mit	> 5000 mg/kg bw	24 Stdn	Kaninchen	Experimenteller	
		OECD 402			(männlich /	Wert	
					weiblich)		
Inhalation	LC0	Äquivalent mit	10.8 mg/l	3 Stdn	Ratte (männlich)	Experimenteller	
		OECD 403				Wert	

Butan-1-ol

Expositionsweg	Parameter	Methode	Wert	Expositionszeit	Spezies	Wertbestimmung	Bemerkung
Oral	LD50	Äquivalent mit OECD 401	2292 mg/kg bw		Ratte (weiblich)	Experimenteller Wert	
Oral			Kategorie 4			Anhang VI	
Dermal	LD50	Äquivalent mit OECD 402	3430 mg/kg bw			Experimenteller Wert	
Inhalation (Dämpfe)	LC50	Äquivalent mit OECD 403	> 17.76 mg/l Luft	4 Stdn	Ratte (männlich / weiblich)	Experimenteller Wert	

Die Einstufung dieses Stoffes nach Anhang VI ist fraglich, da sie nicht mit der Schlussfolgerung des Tests übereinstimmt

<u>Trizinkbis(orthophosphat)</u>

Expositionsweg	Parameter	Methode	Wert	Expositionszeit	Spezies	Wertbestimmung	Bemerkung
Oral	LD50	OECD 401	> 5000 mg/kg bw		Ratte	Experimenteller	
						Wert	
Dermal						Datenverzicht	
Inhalation (Stäube)	LC50	Äquivalent mit OECD 403	> 5.70 mg/l Luft		Ratte (männlich / weiblich)	Read-across	

2-Propanol

Expositionsweg	Parameter	Methode	Wert	Expositionszeit	Spezies	Wertbestimmung	Bemerkung
Oral	LD50	Äquivalent mit	5840 mg/kg bw		Ratte	Experimenteller	
		OECD 401				Wert	
Dermal	LD50	Äquivalent mit	12882 mg/kg bw	24 Stdn	Kaninchen	Experimenteller	Umgerechneter
		OECD 402				Wert	Wert
Dermal	LD50	Äquivalent mit	16400 ml/kg bw	24 Stdn	Kaninchen	Experimenteller	
		OECD 402				Wert	
Inhalation (Dämpfe)	LC50	Äquivalent mit	> 10000 ppm	6 Stdn	Ratte (männlich /	Experimenteller	
		OECD 403			weiblich)	Wert	

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08

Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 11/27

 $\underline{\text{Titandioxid; [in Pulverform mit mindestens 1 \% Partikel mit } \underline{\text{aerodynamischem Durchmesser}} \leq 10 \ \mu\text{m}]}$

Expositionsweg	Parameter	Methode	Wert	Expositionszeit	Spezies	Wertbestimmung	Bemerkung
Oral	LD50	OECD 401	> 2000 mg/kg bw		Ratte (männlich /	Experimenteller	
					weiblich)	Wert	
Dermal						Datenverzicht	
Inhalation (Stäube)	LC50	OECD 403	> 5.09 mg/l	4 Stdn	Ratte (männlich)	Experimenteller	
						Wert	

Schlussfolgerung

Nicht für akute Toxizität eingestuft

Ätz-/Reizwirkung

NOVAFILLER

Keine (experimentellen) Daten zum Gemisch vorhanden Einstufung beruht auf den relevanten Bestandteilen

Aceton

Expositionsweg	Ergebnis	Methode	Expositionszeit	Zeitpunkt	Spezies	Wertbestimmung	Bemerkung
Auge	Reizwirkung	OECD 405	24 Stdn	24; 48; 72 Stunden		'	Einmalige Verabreichung mit Spülung
Haut	Keine Reizwirkung		3 Tag(e)	24; 48; 72 Stdn; 4 Tage	Meerschweinchen	Beweiskraft	
Inhalation	Leicht reizend	Beobachtungsstud ie am Menschen	20 Minuten		Mensch	Literatur	

n-Butylacetat

Expositionsweg	Ergebnis	Methode	Expositionszeit	Zeitpunkt	Spezies	Wertbestimmung	Bemerkung
Auge	Keine Reizwirkung	OECD 405		24; 48; 72 Stunden		Experimenteller Wert	Einmalige Verabreichung ohne Spülung
Dermal	Keine Reizwirkung	Äquivalent mit OECD 404	4 Stdn	24; 48; 72 Stunden		Experimenteller Wert	

2-Methoxy-1-methylethylacetat

Expositionsweg	Ergebnis	Methode	Expositionszeit	Zeitpunkt	Spezies	Wertbestimmung	Bemerkung
Auge	Keine Reizwirkung	Äquivalent mit OECD 405		24; 48; 72 Stunden		Experimenteller Wert	Einmalige Verabreichung
Haut	Keine Reizwirkung	Äquivalent mit OECD 404	4 Stdn	24; 48; 72 Stunden	Kaninchen	Experimenteller Wert	

Butan-1-ol

Expositionsweg	Ergebnis	Methode	Expositionszeit	Zeitpunkt	Spezies	Wertbestimmung	Bemerkung
Auge	Schwere Augenschädigung	OECD 405		24; 48; 72 Stunden		Experimenteller Wert	
Haut	Reizwirkung	Draize Skin Test		24; 48; 72 Stunden		Experimenteller Wert	
Inhalation	Reizwirkung	Beobachtung von Menschen				Experimenteller Wert	

Trizinkbis(orthophosphat)

Expositionsweg	Ergebnis	Methode	Expositionszeit	Zeitpunkt	Spezies	Wertbestimmung	Bemerkung
Auge	Keine Reizwirkung	OECD 405	72 Stdn	1; 24; 48; 72	Kaninchen	Experimenteller	
				Stunden		Wert	
Haut	Keine Reizwirkung	Patch-Test	5 Tag(e)		Kaninchen	Read-across	

2-Propanol

Expositionsweg	Ergebnis	Methode	Expositionszeit	Zeitpunkt	Spezies	Wertbestimmung	Bemerkung
Auge	1	Äquivalent mit OECD 405		24 Stunden		'	Einmalige Verabreichung
Haut	Keine Reizwirkung		4 Stdn	4; 24; 48; 72 Stunden		Experimenteller Wert	

Titandioxid; [in Pulverform mit mindestens 1 % Partikel mit aerodynamischem Durchmesser ≤ 10 μm]

Expositionsweg	Ergebnis	Methode	Expositionszeit	Zeitpunkt	Spezies	Wertbestimmung	Bemerkung
Auge	Keine Reizwirkung	OECD 405		1; 24; 48; 72	Kaninchen	Experimenteller	
				Stunden		Wert	
Haut	Keine Reizwirkung	Äquivalent mit	4 Stdn	48 Std	Kaninchen	Experimenteller	
		OECD 404				Wert	

Schlussfolgerung

Verursacht schwere Augenreizung.

Nicht als hautreizend eingestuft

Nicht als reizend für die Atmungsorgane eingestuft

Sensibilisierung der Atemwege/Haut

NOVAFILLER

Keine (experimentellen) Daten zum Gemisch vorhanden

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 12 / 27

<u>Aceton</u>

Expositionsweg	Ergebnis	Methode	•	Beobachtungszeitp unkt	Spezies	Wertbestimmung	Bemerkung
Haut	Nicht sensibilisierend	Meerschweinchen- Maximierungstest		l		Experimenteller Wert	
Haut		Beobachtung von Menschen				Experimenteller Wert	

n-Butylacetat

Expositionsweg	Ergebnis	Methode	Expositionszeit	Beobachtungszeitp	Spezies	Wertbestimmung	Bemerkung
				unkt			
Haut	Nicht	Äquivalent mit			Meerschweinch	Experimenteller	
	sensibilisierend	OECD 406			en	Wert	

2-Methoxy-1-methylethylacetat

Expositionsweg	Ergebnis	Methode	Expositionszeit	Beobachtungszeitp	Spezies	Wertbestimmung	Bemerkung
				unkt			
Haut	Nicht	Äquivalent mit			Meerschweinch	Experimenteller	
	sensibilisierend	OECD 406			en (männlich /	Wert	
					weiblich)		

Butan-1-ol

Expositionsweg	Ergebnis	Methode	Expositionszeit	Beobachtungszeitp	Spezies	Wertbestimmung	Bemerkung
				unkt			
Haut	Nicht	Äquivalent mit			Maus (weiblich)	Experimenteller	
	sensibilisierend	OECD 429				Wert	

Trizinkbis(orthophosphat)

Expositionsweg	Ergebnis	Methode	Expositionszeit	Beobachtungszeitp unkt	Spezies	Wertbestimmung	Bemerkung
Haut	Nicht sensibilisierend	OECD 406		l	Meerschweinch en (weiblich)	Read-across	

2-Propanol

Expositionsweg	Ergebnis	Methode	•	Beobachtungszeitp unkt	Spezies	Wertbestimmung	Bemerkung
				UIIKL			
Haut	Nicht	OECD 406			Meerschweinch	Experimenteller	
	sensibilisierend				en (männlich /	Wert	
					weiblich)		

 $\underline{\text{Titandioxid; [in Pulverform mit mindestens 1 \% Partikel mit aerodynamischem Durchmesser} \leq 10 \ \mu\text{m}]}$

Expositionsweg	Ergebnis	Methode	Expositionszeit	Beobachtungszeitp	Spezies	Wertbestimmung	Bemerkung
				unkt			
Haut	Nicht	Äquivalent mit			Maus (weiblich)	Experimenteller	
	sensibilisierend	OECD 429				Wert	
Inhalation	Nicht				Maus (weiblich)	Experimenteller	
(Stäube)	sensibilisierend					Wert	

Schlussfolgerung

Nicht als sensibilisierend für die Haut eingestuft Nicht als sensibilisierend bei Inhalation eingestuft

Spezifische Zielorgan-Toxizität

NOVAFILLER

Keine (experimentellen) Daten zum Gemisch vorhanden Einstufung beruht auf den relevanten Bestandteilen Aceton

Expositionsweg	Parameter	Methode	Wert	Organ	Wirkung	Expositionszeit	Spezies	Wertbestimmung
Oral (Trinkwasser)	NOAEL	Äquivalent mit OECD 408	4.86 mg/kg bw/Tag - 5.95 mg/kg bw/Tag		Keine Wirkung	13 Woche(n)	Maus (männlich / weiblich)	Experimenteller Wert
Oral (Trinkwasser)	LOAEL	Äquivalent mit OECD 408	11.3 mg/kg bw/Tag	Leber	Histopatholog ie		Maus (weiblich)	Experimenteller Wert
Dermal								Datenverzicht
Inhalation (Dämpfe)	NOAEC	Subchronische Toxizitätsprüfu ng	19000 ppm		Keine Wirkung	8 Woche(n)	Ratte (männlich)	Experimenteller Wert
Inhalation (Dämpfe)	Dosisnive au	Beobachtungss tudie am Menschen	361 ppm	Zentrales Nervensyste m	Neurotoxisch e Wirkungen	2 Tag(e)	Mensch	Epidemiologische Studie

Überarbeitungsgrund: 3.2; 9; 12; 15Datum der Erstellung: 2011-07-08Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 13 / 27

Expositionsweg	Parameter	Methode	Wert	Organ	Wirkung	Expositionszeit	Spezies	Wertbestimmu
Oral (Magensonde)	NOAEL	Subchronische	125 mg/kg	J	Keine	13 Woche(n)	Ratte (männlich /	Read-across
Oral (iviagelisolide)	NOALL	Toxizitätsprüfu ng	bw/Tag		Wirkung	25 ************************************	weiblich)	neau-aci USS
Oral (Magensonde)	LOAEL	Subchronische Toxizitätsprüfu	500 mg/kg bw/Tag	Zentrales Nervensyste	ZNS- Depression	13 Tag(e)	Ratte (männlich / weiblich)	Read-across
tabalatian	NOAFC	ng	500	m	K-i	12 Weeken (täglich	D-++- / : !: /	E
Inhalation (Dämpfe)	NOAEC	EPA OTS 798.2450	500 ppm		Keine unerwünscht en systemischen Wirkungen	13 Wochen (täglich, 5 Tage / Woche)	Ratte (männlich / weiblich)	Experimentelle Wert
lethoxy-1-methyleth	vlacetat				Wilkungen			
		Mashada	NA/ nut	0	M/inleum m	Funnaciai amanaia	Cmanina	\4/a = h a atima ma
Expositionsweg	Parameter			Organ	Wirkung	Expositionszeit	Spezies	Wertbestimmu
Oral (Magensonde)	NOAEL	OECD 422	≥ 1000 mg/kg		Keine Wirkung	41 Tag(e) - 45 Tag(e)	Ratte (männlich / weiblich)	Experimentelle Wert
Oral (Magensonde)	Dosisnive au	US EPA	500 mg/kg bw/Tag		Schläfrigkeit, Benommenhe it		Ratte (männlich / weiblich)	Experimentelle Wert
Dermal	NOAEL	Äquivalent mit OECD 411	1838 mg/kg bw/Tag		Keine Wirkung	13 Wochen (5 Tage / Woche)	Kaninchen (männlich)	Read-across
Inhalation (Dämpfe)	NOEL	OECD 453	300 ppm		Keine Wirkung	104 Wochen (6Stdn / Tag, 5 Tage / Woche)	Ratte (männlich / weiblich)	Read-across
an-1-ol								
Expositionsweg	Parameter	Methode	Wert	Organ	Wirkung	Expositionszeit	Spezies	Wertbestimmu
Oral (Magensonde)	NOAEL	Subchronische Toxizitätsprüfu ng	125 mg/kg bw/Tag		Keine Wirkung	13 Wochen (täglich)	Ratte (männlich / weiblich)	Experimentelle Wert
Oral (Magensonde)	LOAEL	Subchronische Toxizitätsprüfu ng	500 mg/kg bw/Tag	Zentrales Nervensyste m	ZNS- Depression	13 Wochen (täglich)	Ratte (männlich / weiblich)	Experimentelle Wert
Haut	Dosisnive au	Subakute Toxizitätsprüfu ng	100 %	Haut	Reizung	3 Woche(n)	Kaninchen	Experimentelle Wert
Inhalation (Dämpfe)	NOAEL	EPA OTS 798.2450	500 ppm		Keine Wirkung	13 Wochen (6Stdn / Tag, 5 Tage / Woche)	Ratte (männlich / weiblich)	Experimentelle Wert
Inhalation (Dämpfe)	Dosisnive au	EPA OTS 798.2450	1500 ppm	Zentrales Nervensyste	Schläfrigkeit, Benommenhe it	13 Wochen (6Stdn / Tag, 5 Tage / Woche)	Ratte (männlich / weiblich)	Experimentelle Wert
inkbis(orthophospha	1+1			m	IL			
		laa		اما	har I			
	Parameter			Organ		Expositionszeit		Wertbestimmu
Oral (Diät)	NOAEL	OECD 408	31.52 mg/kg bw/Tag		Keine Wirkung	13 Wochen (täglich)	Ratte (männlich / weiblich)	Read-across
Dermal								Datenverzicht
Inhalation	Dosisnive au	Subakute Toxizitätsprüfu ng	4.6 mg/m³ Luft	Lungen	Beeinträchtig ung/Degener ation	6 Tage (3Stdn / Tag)	Meerschweinche n (männlich)	Read-across
opanol Expositionsweg	Parameter	Methode	Wert	Organ	Wirkung	Expositionszeit	Spezies	Wertbestimmu
Oral								Datenverzicht
Dermal								Datenverzicht
Inhalation	NOAEC	OECD 451	5000 ppm		Keine	104 Wochen (6Stdn /	Patte (männlich /	Experimentelle
(Dämpfe)	NUAEC	OLCD 451	эооо рріп		Wirkung	Tag, 5 Tage / Woche)		Wert
Inhalation (Dämpfe)	Dosisnive au	Äquivalent mit OECD 403	5000 ppm	Zentrales Nervensyste m	Schläfrigkeit, Benommenhe it	6 Stdn	Ratte (männlich / weiblich)	Experimentelle Wert
ndiavide lin Dulyarfa	rm mit mino	estens 1 % Parti	kel mit aerodyna	mischem Durch	nmesser ≤ 10 μm	ıl		
<u>liuloxiu, [iii Pulvei io</u>	Parameter	Methode	Wert	Organ	Wirkung	Expositionszeit	Spezies	Wertbestimmu
Expositionsweg		0.505 400	> 1000 mg/kg		Keine	90 Tag(e)	Ratte (männlich /	Experimentelle
	NOAEL	OECD 408	bw/Tag		Wirkung		weiblich)	Wert
Expositionsweg	NOAEL	OECD 408			Wirkung		weiblich)	Wert Datenverzicht

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 14 / 27

Nicht für subchronische Toxizität eingestuft

Keimzell-Mutagenität (in vitro)

NOVAFILLER

Keine (experimentellen) Daten zum Gemisch vorhanden Beurteilung beruht auf den relevanten Bestandteilen

Methode Äquivalent mit OECD 471 Methode Äquivalent mit OECD 471	Testsubstrat Bacteria (S.typhimurium)	Wirkung Keine Wirkung	Wertbestimmung Experimenteller Wert	Bemerkung
Methode		Keine Wilkung	Experimentalier were	
				•
	Testsubstrat	Wirkung	Wertbestimmung	Bemerkung
	Bacteria (S.typhimurium)		Experimenteller Wert	20
riquiralene illie 3235 172	Zacteria (ertyprimiariam)		Experimentalia: Wart	
nt .				
	Testsubstrat	Wirkung	Werthestimmung	Bemerkung
riquiralent illit 0200 172	Basteria (Srtypriiiiariarii,	The transang	Experimentalia: Wart	
				<u> </u>
Methode	Testsubstrat	Wirkung	Werthestimmung	Bemerkung
				Denner Kung
0100470		Ivellie Milkulik	Lxperimentener wert	
	(079)			
	l	har I		l
		Wirkung		Bemerkung
EU Methode B.13/14	Bacteria (S.typnimurium)		Read-across	
		1		
			•	Bemerkung
Äquivalent mit OECD 471	Bacteria (S.typhimurium)	Keine Wirkung	Experimenteller Wert	
Äquivalent mit OECD 476	Eierstöcke des chinesischen	Keine Wirkung	Experimenteller Wert	
	Hamsters			
		1		
mindestens 1 % Partikel mit	aerodynamischem Durchmes	ser ≤ 10 μm]		
Methode	Testsubstrat	Wirkung	Wertbestimmung	Bemerkung
OECD 473	Eierstöcke des chinesischen		Experimenteller Wert	
	Hamsters			
OFCD 471	Bacteria (S.typhimurium)		Experimenteller Wert	
0200 1/1	Saccina (Sicypinnianani)			
	1	1		
	mindestens 1 % Partikel mit Methode	Methode Testsubstrat Äquivalent mit OECD 471 Bacteria (S.typhimurium) Methode Testsubstrat OECD 476 Lungenfibroblasten des chinesischen Hamsters (V79) Methode Testsubstrat EU Methode B.13/14 Bacteria (S.typhimurium) Methode Testsubstrat Äquivalent mit OECD 471 Bacteria (S.typhimurium) Äquivalent mit OECD 476 Eierstöcke des chinesischen Hamsters Methode Testsubstrat OECD 473 Eierstöcke des chinesischen Hamsters	Methode Testsubstrat Wirkung Äquivalent mit OECD 471 Bacteria (S.typhimurium) Keine Wirkung Methode Testsubstrat Wirkung OECD 476 Lungenfibroblasten des chinesischen Hamsters (V79) Keine Wirkung Methode Testsubstrat Wirkung EU Methode B.13/14 Bacteria (S.typhimurium) Keine Wirkung Äquivalent mit OECD 471 Bacteria (S.typhimurium) Keine Wirkung Äquivalent mit OECD 476 Eierstöcke des chinesischen Hamsters Keine Wirkung Methode Testsubstrat Wirkung Methode Testsubstrat Wirkung OECD 473 Eierstöcke des chinesischen Hamsters	Methode Testsubstrat Wirkung Wertbestimmung Äquivalent mit OECD 471 Bacteria (S.typhimurium) Keine Wirkung Experimenteller Wert Methode Testsubstrat Wirkung Wertbestimmung OECD 476 Lungenfibroblasten des chinesischen Hamsters (V79) Keine Wirkung Experimenteller Wert Methode Testsubstrat Wirkung Wertbestimmung EU Methode B.13/14 Bacteria (S.typhimurium) Read-across Methode Testsubstrat Wirkung Wertbestimmung Äquivalent mit OECD 471 Bacteria (S.typhimurium) Keine Wirkung Experimenteller Wert Äquivalent mit OECD 476 Eierstöcke des chinesischen Hamsters Keine Wirkung Experimenteller Wert mindestens 1 % Partikel mit aerodynamischem Durchmesser ≤ 10 µm] Methode Testsubstrat Wirkung Wertbestimmung OECD 473 Eierstöcke des chinesischen Hamsters Wirkung Experimenteller Wert

Keimzell-Mutagenität (in vivo)

NOVAFILLER

Keine (experimentellen) Daten zum Gemisch vorhanden Beurteilung beruht auf den relevanten Bestandteilen

Aceton

Ergebnis	Methode	Expositionszeit	Testsubstrat	Organ	Wertbestimmung
Negativ (Oral (Trinkwasser))	Micronucleus test	13 Woche(n)	Maus (männlich /		Literatur
			weiblich)		
n-Butylacetat					
Ergebnis	Methode	Expositionszeit	Testsubstrat	Organ	Wertbestimmung
Negativ (Oral (Magensonde))	OECD 474		Maus (männlich /		Read-across
			weiblich)		
Butan-1-ol					
Ergebnis	Methode	Expositionszeit	Testsubstrat	Organ	Wertbestimmung
Negativ (Oral (Magensonde))	OECD 474		Maus (männlich /		Experimenteller Wert
			weiblich)		

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 15 / 27 Produktnummer: 51293

Ergebnis	Methode	Expositionszeit	Testsubstrat	Organ	Wertbestimmung
Negativ (Intraperitoneal)	Micronucleus test	2 Dosis(Dosen)/24-	Maus (männlich /		Read-across
		Stunden-Intervall	weiblich)		
2-Propanol					
Ergebnis	Methode	Expositionszeit	Testsubstrat	Organ	Wertbestimmung
Negativ (Intraperitoneal)	Äquivalent mit		Maus (männlich /		Experimenteller Wert
	OECD 474		weiblich)		
Titandioxid; [in Pulverform mit minde	estens 1 % Partikel mit ac	erodynamischem Durchm	iesser ≤ 10 μm]		
Ergebnis	Methode	Expositionszeit	Testsubstrat	Organ	Wertbestimmung
Negativ (Oral (Magensonde))	OECD 474		Maus (männlich /		Experimenteller Wert
			weiblich)		

Schlussfolgerung

Trizinkbis(orthophosphat)

Nicht für mutagene Toxizität oder Gentoxizität eingestuft

Karzinogenität

NOVAFILLER

Keine (experimentellen) Daten zum Gemisch vorhanden Beurteilung beruht auf den relevanten Bestandteilen

<u>Aceton</u>

Expositionsw eg	Parameter	Methode	Wert	Expositionszeit	Spezies	Wirkung	Organ	Wertbestimmung
Dermal	NOEL	Karzinogene Toxizitätsstudie	79 mg	51 Wochen (3 Mal / Woche)	,	Keine krebserzeugend e Wirkung		Literatur

2-Methoxy-1-methylethylacetat

Expositionsw eg	Parameter	Methode	Wert	Expositionszeit	Spezies	Wirkung	Organ	Wertbestimmung
Inhalation (Dämpfe)	NOEL	OECD 453	3000 ppm	104 Wochen (6Stdn / Tag, 5 Tage / Woche)	I	Keine krebserzeugend e Wirkung		Read-across

Trizinkbis(orthophosphat)

Expositionsw	Parameter	Methode	Wert	Expositionszeit	Spezies	Wirkung	Organ	Wertbestimmung
eg								
Oral	NOAEL	Karzinogene	> 22000	52 Woche(n)	Maus (männlich	Keine		Read-across
(Trinkwasser		Toxizitätsstudie	mg/kg		/ weiblich)	krebserzeugend		
)			bw/Tag			e Wirkung		

2-Propanol

Expositionsw	Parameter	Methode	Wert	Expositionszeit	Spezies	Wirkung	Organ	Wertbestimmung
eg								
Inhalation	NOEL	OECD 451	5000 ppm	104 Wochen (6Stdn	Ratte (männlich	Keine		Experimenteller
(Dämpfe)				/ Tag, 5 Tage /	/ weiblich)	krebserzeugend		Wert
				Woche)		e Wirkung		

Titandioxid; [in Pulverform mit mindestens 1 % Partikel mit aerodynamischem Durchmesser ≤ 10 μm]

Expositionsw eg	Parameter	Methode	Wert	Expositionszeit	Spezies	Wirkung	Organ	Wertbestimmung
Inhalation (Stäube)	NOAEC	OECD 453	5 mg/m³ Luft	104 Wochen (6Stdn / Tag, 5 Tage / Woche)	/ weiblich)	Keine krebserzeugend e Wirkung	- 0-	Experimenteller Wert
Oral (Diät)	NOEL	Karzinogene Toxizitätsstudie	50000 ppm	103 Wochen (7 Tage / Woche)	/ weiblich)	Keine krebserzeugend e Wirkung		Experimenteller Wert

Schlussfolgerung

Nicht für Karzinogenität eingestuft

Reproduktionstoxizität

NOVAFILLER

Keine (experimentellen) Daten zum Gemisch vorhanden Beurteilung beruht auf den relevanten Bestandteilen

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08

Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 16 / 27

	Parameter	Methode	Wert	Expositionszeit	Spezies	Wirkung	Organ	Wertbestimmu
Entwicklungstoxizität (Inhalation (Aerosol))	NOAEC	Äquivalent mit OECD 414	2200 ppm	14 Tage (Trächtigkeit,	Ratte	Keine Wirkung	Fötus	Experimentelle Wert
, , , , , , , , , , , , , , , , , , , ,				täglich)				
	LOAEC	Äquivalent mit	11000 mg/kg	14 Tage	Ratte	Fötotoxizität	Fötus	Experimentelle
		OECD 414	bw/Tag	(Trächtigkeit,				Wert
			_	täglich)				
Maternale Toxizität	NOAEC	Äquivalent mit	2200 ppm	14 Tage	Ratte	Keine Wirkung		Experimentelle
(Inhalation (Aerosol))		OECD 414		(Trächtigkeit,				Wert
				täglich)				
	LOAEC	Äquivalent mit	11000 ppm	14 Tage	Ratte	Maternale		Experimentelle
		OECD 414		(Trächtigkeit,		Toxizität		Wert
				täglich)				
Wirkungen auf	NOAEL		900 mg/kg	13 Woche(n)	Ratte	Keine Wirkung		Literatur
Fruchtbarkeit (Oral			bw/Tag		(männlich)			
(Trinkwasser))								
<u>utylacetat</u>						l	I_	
=	Parameter	Methode	Wert	Expositionszeit	Spezies	Wirkung	Organ	Wertbestimmu
Entwicklungstoxizität	LOAEC	Äquivalent mit	1500 ppm		Ratte	Fötotoxizität		Experimentelle
(Inhalation (Dämpfe))	LOAFC	OECD 414	1500		Dott -	Matarral	-	Wert
Maternale Toxizität	LOAEC	Äquivalent mit OECD 414	1500 ppm		Ratte	Maternale Toxizität		Experimentelle
(Inhalation (Dämpfe))	NOAFC	_	2000 :	. 00 T()	D-44-		-	Wert
Wirkungen auf	NOAEC	OECD 416	2000 ppm	> 90 Tag(e)	Ratte (männlich /	Keine Wirkung		Experimentelle
Fruchtbarkeit (Inhalation (Dämpfe))					(mannlich / weiblich)	1		Wert
lethoxy-1-methylethylace	l etat				Weiblich	<u> </u>		
ictioxy 1 inctifyictifyidet	Parameter	Methode	Wert	Expositionszeit	Spezies	Wirkung	Organ	Wertbestimmu
Entwicklungstoxizität	NOAEL	Äquivalent mit		10 Tage	Ratte	Keine Wirkung	Fötus	Experimentelle
(Inhalation)	INOALL	OECD 414	> 4000 ppiii	(Trächtigkeit,	Natte	Keille Wilkung	liotus	Wert
(0200 .2.		täglich)				1
Entwicklungstoxizität				128	†			
(Inhalation (Dämpfe))								
Maternale Toxizität	NOAEL	Äquivalent mit	1500 ppm	10 Tage	Ratte	Keine Wirkung		Experimentelle
(Inhalation (Dämpfe))		OECD 414	2500 pp	(Trächtigkeit,	- Carre	Themse transaction		Wert
(täglich)				
Wirkungen auf	NOAEL	OECD 416	300 ppm		Ratte	Keine Wirkung		Read-across
Fruchtbarkeit					(männlich /			
(Inhalation (Dämpfe))					weiblich)			
<u>an-1-ol</u>								
	Parameter	Methode	Wert	Expositionszeit	Spezies	Wirkung	Organ	Wertbestimmu
Entwicklungstoxizität	NOAEL	Äquivalent mit	1454 mg/kg	21 Tag(e)	Ratte	Keine Wirkung	Fötus	Experimentelle
(Oral (Trinkwasser))		OECD 414	bw/Tag					Wert
Maternale Toxizität	NOAEL	Äquivalent mit	1454 mg/kg	21 Tag(e)	Ratte	Keine Wirkung		Experimentelle
(Oral (Trinkwasser))		OECD 414	bw/Tag					Wert
Wirkungen auf	NOAEC	OECD 416	2000 ppm		Ratte	Keine Wirkung		Experimentelle
Fruchtbarkeit					(männlich /	1		Wert
(Inhalation (Dämpfe))					weiblich)	l		
inkbis(orthophosphat)	D	84-41	144	From a state to	lc	hag:l	0	Mr. 11 -1
Faradaldana (1977)	Parameter	Methode	Wert	Expositionszeit	Spezies	Wirkung	Organ	Wertbestimmu
Entwicklungstoxizität	NOAEL	Studie über	42.5 mg/kg	10 Tag(e)	Ratte	Keine Wirkung		Read-across
(Oral (Magensonde))		Entwicklungsto xizität	bw/ rag		(weiblich)	1		
Maternale Toxizität	NOAEL	Studie über	12 5 mg/kg	10 Tage	Ratte	Keine Wirkung		Read across
(Oral (Magensonde))	INUAEL	Entwicklungsto	42.5 mg/kg	(Trächtigkeit,	(weiblich)	Keine wirkung		Read-across
(Oral (Magensoniae))		xizität	Jvv/ Tag	täglich)	(WCIDIICII)	1		
Wirkungen auf	NOAEL (F1)	Äquivalent mit	15 mg/kg		Ratte	Keine Wirkung	1	Read-across
Fruchtbarkeit (Oral	(11)	OECD 416	bw/Tag		(männlich /			incua acioss
(Magensonde))			, , , , , ,		weiblich)	1		
ropanol	1	1	1	1			1	1
	Parameter	Methode	Wert	Expositionszeit	Spezies	Wirkung	Organ	Wertbestimmu
Entwicklungstoxizität	NOAEL	Äquivalent mit		10 Tag(e)	Ratte	Keine Wirkung	Fötus	Experimentelle
(Oral (Magensonde))		OECD 414	bw/Tag] 5. /				Wert
Maternale Toxizität	NOAEL	Äquivalent mit	400 mg/kg	10 Tag(e)	Ratte	Keine Wirkung		Experimentelle
		OECD 414	bw/Tag	=, ,				Wert
(Oral (Magensonde))								
(Oral (Magensonde)) Wirkungen auf	NOAEL	Äquivalent mit	853 mg/kg	21 Tag(e) - 70 Tag	Ratte	Keine Wirkung		Experimentelle
	NOAEL	Äquivalent mit OECD 415	853 mg/kg bw/Tag	21 Tag(e) - 70 Tag (e)	Ratte (männlich /	Keine Wirkung		Experimentelle Wert

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 17 / 27

Titandioxid; [in Pulverform mit mindestens 1 % Partikel mit aerodynamischem Durchmesser \leq 10 μ m]

	Parameter	Methode	Wert	Expositionszeit	Spezies	Wirkung	Organ	Wertbestimmung
Entwicklungstoxizität	NOAEL	OECD 414	1000 mg/kg	2 Wochen (7 Tage	Ratte	Keine Wirkung		Experimenteller
(Oral (Magensonde))			bw/Tag	/ Woche)				Wert
Maternale Toxizität	NOAEL	OECD 414	1000 mg/kg	2 Wochen (7 Tage	Ratte	Keine Wirkung		Experimenteller
(Oral (Magensonde))			bw/Tag	/ Woche)				Wert

Schlussfolgerung

Nicht für Reproduktions- oder Entwicklungstoxizität eingestuft

Toxizität andere Wirkungen

NOVAFILLER

Einstufung beruht auf den relevanten Bestandteilen

<u>Aceton</u>

	Parameter	Methode	Wert	Organ	Wirkung	Expositionszeit	Spezies	Wertbestimmung
				Haut	Spröde oder			Literaturstudie
					rissige Haut			Haut
n-B	utylacetat				-			

Parameter	Methode	Wert	Organ	Wirkung	Expositionszeit	Spezies	Wertbestimmung
NOEC	EPA OTS 798.6050	1500 ppm		Hypoaktivität	6 Stdn	Ratte (männlich /	Experimenteller
						weiblich)	Wert
NOAEC	EPA OTS 798.6050	500 ppm		Keine	13 Woche(n)	Ratte (männlich /	Experimenteller
				neurotoxischen		weiblich)	Wert
				Wirkungen			

Schlussfolgerung

Wiederholter Kontakt kann zu spröder oder rissiger Haut führen.

Chronische Wirkungen nach kurzer oder lang anhaltender Exposition

NOVAFILLER

Keine Wirkungen bekannt.

11.2. Angaben über sonstige Gefahren

Kein Hinweis auf endokrinschädliche Eigenschaften

ABSCHNITT 12: Umweltbezogene Angaben

12.1. Toxizität

NOVAFILLER

Keine (experimentellen) Daten zum Gemisch vorhanden Einstufung beruht auf den relevanten Bestandteilen

Aceton

	Parameter	Methode	Wert	Dauer	Spezies	Testplan	Süß- /Salzwasser	Wertbestimmung
Akute Toxizität Fische	LC50	Äquivalent mit OECD 203	6210 mg/l - 8120 mg/l	96 Stdn	Pimephales promelas	Durchflusss ystem	Süßwasser	Experimenteller Wert; Gemessene Konzentration
Akute Toxizität Krebstiere	LC50		8800 mg/l	48 Stdn	Daphnia pulex	Statisches System	Süßwasser	Experimenteller Wert; Nominale Konzentration
Toxizität Algen und andere Wasserpflanzen	NOEC		530 mg/l		Algae		Süßwasser	
Chronische Toxizität wasserbewohnende Krebstiere	NOEC	Äquivalent mit OECD 211	2212 mg/l	28 Tag(e)	Daphnia magna	Durchflusss ystem	Süßwasser	Experimenteller Wert

Überarbeitungsgrund: 3.2; 9; 12; 15 Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 18 / 27

	Parameter	Methode	Wert	Dauer	Spezies	Testplan	Süß-	Wertbestimmung
							/Salzwasser	
Akute Toxizität Fische	LC50	Äquivalent mit OECD 203	18 mg/l	96 Stdn	Pimephales promelas	Durchflusss ystem	Süßwasser	Experimenteller Wert; Tödlich
Akute Toxizität Krebstiere	EC50	Äquivalent mit OECD 202	44 mg/l	48 Stdn	Daphnia sp.	Statisches System	Süßwasser	Experimenteller Wert; Fortbewegung
Toxizität Algen und andere Wasserpflanzen	ErC50	OECD 201	397 mg/l	72 Stdn	Pseudokirchneri ella subcapitata	Statisches System	Süßwasser	Read-across; GLP
	NOEC	OECD 201	196 mg/l	72 Stdn	Pseudokirchneri ella subcapitata	Statisches System	Süßwasser	Read-across; Wachtstumsrate
Chronische Toxizität wasserbewohnende Krebstiere	NOEC	OECD 211	23.2 mg/l	21 Tag(e)	Daphnia magna	Semistatisc hes System	Süßwasser	Read-across; Reproduktion
Toxizität Wasser- Mikroorganismen	IC50	TETRATOX assay	356 mg/l	40 Stdn	Tetrahymena pyriformis	Statisches System	Süßwasser	Experimenteller Wert; Wachstum

	Parameter	Methode	Wert	Dauer	Spezies	Wertbestimmung
Toxizität terrestrischer Pflanzen	EC50	Äquivalent mit OECD 208	> 1000 mg/kg Boden dw	14 Tag(e)		Experimenteller Wert

2-Methoxy-1-methylethylacetat

	Parameter	Methode	Wert	Dauer	Spezies	Testplan	Süß- /Salzwasser	Wertbestimmung
Akute Toxizität Fische	LC50	OECD 203	100 mg/l - 180 mg/l	96 Stdn	Oncorhynchus mykiss	Statisches System	Süßwasser	Experimenteller Wert; Nominale Konzentration
Akute Toxizität Krebstiere	EC50	EU Methode C.2	> 500 mg/l	48 Stdn	Daphnia magna	Statisches System	Süßwasser	Experimenteller Wert; Fortbewegung
Toxizität Algen und andere Wasserpflanzen	ErC50	OECD 201	> 1000 mg/l	96 Stdn	Pseudokirchneri ella subcapitata	Statisches System	Süßwasser	Experimenteller Wert; Nominale Konzentration
	NOEC	OECD 201	≥ 1000 mg/l	96 Stdn	Pseudokirchneri ella subcapitata	Statisches System	Süßwasser	Experimenteller Wert; Wachtstumsrate
Chronische Toxizität Fische	NOEC	OECD 204	47.5 mg/l	14 Tag(e)	Oryzias latipes	Durchflusss ystem	Süßwasser	Experimenteller Wert; Verhalten
Chronische Toxizität wasserbewohnende Krebstiere	NOEC	OECD 211	≥ 100 mg/l	21 Tag(e)	Daphnia magna	Semistatisc hes System	Süßwasser	Experimenteller Wert; Reproduktion
Toxizität Wasser- Mikroorganismen	EC10	Äquivalent mit OECD 209	> 1000 mg/l	30 Minuten	Belebtschlamm	Statisches System	Süßwasser	Experimenteller Wert; Atmung

Butan-1-ol

<u>utan-1-01</u>			•		•			
	Parameter	Methode	Wert	Dauer	Spezies	Testplan	Süß- /Salzwasser	Wertbestimmung
Akute Toxizität Fische	LC50	OECD 203	1376 mg/l	96 Stdn	Pimephales promelas	Statisches System	Süßwasser	Experimenteller Wert; GLP
Akute Toxizität Krebstiere	EC50	OECD 202	1328 mg/l	48 Stdn	Daphnia magna	Statisches System	Süßwasser	Experimenteller Wert; GLP
Toxizität Algen und andere Wasserpflanzen	ErC50	OECD 201	225 mg/l	96 Stdn	Pseudokirchneri ella subcapitata	Statisches System	Süßwasser	Experimenteller Wert; GLP
Chronische Toxizität wasserbewohnende Krebstiere	NOEC	OECD 211	4.1 mg/l	21 Tag(e)	Daphnia magna	Semistatisc hes System	Süßwasser	Experimenteller Wert; Reproduktion
Toxizität Wasser- Mikroorganismen	EC50	DIN 38412-8	4390 mg/l	17 Stdn	Pseudomonas putida	Statisches System	Süßwasser	Experimenteller Wert; Wachstum

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 19 / 27

Trizin	khic/	orthoph	ocnhat)

	Parameter	Methode	Wert	Dauer	Spezies	Testplan	Süß- /Salzwasser	Wertbestimmung
Akute Toxizität Fische	LC50	ASTM E729- 88	0.169 mg/l	96 Stdn	Oncorhynchus mykiss	Statisches System	Süßwasser	Read-across; Tödlich
Akute Toxizität Krebstiere	EC50	EPA 600/4- 85/013	0.86 mg/l	48 Stdn	Daphnia magna	Statisches System	Süßwasser	Read-across; GLP
Toxizität Algen und andere Wasserpflanzen	IC50	OECD 201	0.136 mg/l	72 Stdn	Pseudokirchneri ella subcapitata	Statisches System	Süßwasser	Experimenteller Wert; Wachtstumsrate
	NOEC	OECD 201	0.024 mg/l	72 Stdn	Pseudokirchneri ella subcapitata	Statisches System	Süßwasser	Experimenteller Wert; Wachtstumsrate
Chronische Toxizität Fische	NOEC	OECD 215	0.199 mg/l	30 Tag(e)	Oncorhynchus mykiss	Durchflusss ystem	Süßwasser	Read-across; Tödlich
Chronische Toxizität wasserbewohnende Krebstiere	NOEC		0.035 mg/l	3 Woche(n)	Daphnia magna	Semistatisc hes System	Süßwasser	Read-across; Reproduktion
Toxizität Wasser- Mikroorganismen	IC50	ISO 9509:2006	0.35 mg/l	4 Stdn	Belebtschlamm	Statisches System	Süßwasser	Experimenteller Wert; Nominale Konzentration

2-Propanol

	Parameter	Methode	Wert	Dauer	Spezies	Testplan	Süß- /Salzwasser	Wertbestimmung
Akute Toxizität Fische	LC50	Äquivalent mit OECD 203	9640 mg/l - 10000 mg/l	96 Stdn	Pimephales promelas	Durchflusss ystem	Süßwasser	Experimenteller Wert; Tödlich
Akute Toxizität Krebstiere	LC50	Äquivalent mit OECD 202	> 10000 mg/l	24 Stdn	Daphnia magna	Statisches System	Süßwasser	Experimenteller Wert; Fortbewegung
Toxizität Algen und andere Wasserpflanzen	Toxicity threshold		1800 mg/l	7 Tag(e)	Scenedesmus quadricauda	Statisches System	Süßwasser	Experimenteller Wert; Toxizitätstest
Chronische Toxizität Fische								Datenverzicht
Chronische Toxizität wasserbewohnende Krebstiere	NOEC		2344 μmol/l	16 Tag(e)	Daphnia magna		Süßwasser	Experimenteller Wert; Wachstum
Toxizität Wasser- Mikroorganismen	Toxicity threshold	Äquivalent mit DIN 38412/8	1050 mg/l	16 Stdn	Pseudomonas putida	Statisches System	Süßwasser	Experimenteller Wert; Toxizitätstest

Titandioxid; [in Pulverform mit mindestens 1 % Partikel mit aerodynamischem Durchmesser ≤ 10 μm]

	Parameter	Methode	Wert	Dauer	Spezies		Süß-	Wertbestimmung
							/Salzwasser	
Akute Toxizität Fische	LC50		> 1000 mg/l		Pisces		Süßwasser	
Akute Toxizität Krebstiere	EC50		> 1000 mg/l		Invertebrata		Süßwasser	
Toxizität Algen und andere Wasserpflanzen	EC50	OECD 201	> 100 mg/l	72 Stdn		Statisches System	Süßwasser	Experimenteller Wert; Wachtstumsrate
	NOEC	OECD 201	≥ 100 mg/l	72 Stdn		Statisches System	Süßwasser	Experimenteller Wert; Wachtstumsrate

Schlussfolgerung

Schädlich für Wasserorganismen, mit langfristiger Wirkung.

12.2. Persistenz und Abbaubarkeit

Aceton

Biologische Abbaubarkeit Wasser

Methode	Wert	Dauer	Wertbestimmung
OECD 301B	90.9 %	28 Tag(e)	Experimenteller Wert

n-Butylacetat

Biologische Abbaubarkeit Wasser

Methode	Wert	Dauer	Wertbestimmung
OECD 301D	83 %; Sauerstoffverbrauch	28 Tag(e)	Experimenteller Wert

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 20 / 27

2-Methoxy-1-methylethylacetat Biologische Abbaubarkeit Wasser Wertbestimmung Methode Wert Dauer OECD 301F 83 %; Sauerstoffverbrauch 28 Tag(e) Experimenteller Wert Phototransformation Luft (DT50 Luft) Konz. OH-Radikale Methode Wert Wertbestimmung AOPWIN v1.92 10.818 Stdn 1.5E6 /cm³ Berechnungswert Biologischen Abbaubarkeit Boden Wertbestimmung Wert Dauer Methode Äquivalent mit OECD 304A > 57 %; GLP 1 Tag(e) Experimenteller Wert Butan-1-ol Biologische Abbaubarkeit Wasser Wert Dauer Wertbestimmung Methode APHA 92 %; Sauerstoffverbrauch 20 Tag(e) Experimenteller Wert Phototransformation Luft (DT50 Luft) Methode Wert Konz. OH-Radikale Wertbestimmung AOPWIN v1.92 18.629 Stdn 1.5E6 /cm3 Berechnungswert 2-Propanol Biologische Abbaubarkeit Wasser Wertbestimmung Methode Wert Dauer EU Methode C.5 53 %; Sauerstoffverbrauch 5 Tag(e) Experimenteller Wert Schlussfolgerung Wasser Enthält biologisch nicht leicht abbaubare Komponente(n) 12.3. Bioakkumulationspotenzial **NOVAFILLER Log Kow** Methode Bemerkung Wert Temperatur Wertbestimmung Nicht anwendbar (Gemisch) **Aceton** Log Kow Wert Methode Bemerkung Temperatur Wertbestimmung -0.23 Testdaten n-Butylacetat Log Kow Methode Bemerkung Wert Temperatur Wertbestimmung OECD 117 2.3 Experimenteller Wert 2-Methoxy-1-methylethylacetat Log Kow Methode Bemerkung Wert Temperatur Wertbestimmung Äquivalent mit OECD 117 20 °C 1.2 Experimenteller Wert Butan-1-ol **BCF** andere Wasserorganismen Wert Dauer Parameter Methode Spezies Wertbestimmung BCF BCFBAF v3.01 3.162 l/kg; Berechnungswert Frischgewicht Log Kow Methode Bemerkung Wert Temperatur Wertbestimmung OECD 117 25 °C Experimenteller Wert Trizinkbis(orthophosphat) **BCF** andere Wasserorganismen Parameter Methode Wert Dauer Spezies Wertbestimmung 116 - 60960; BCF 21 Tag(e) Read-across Gammarus sp. Frischgewicht Log Kow Bemerkung Wert Methode Temperatur Wertbestimmung Nicht anwendbar (anorganisch) 2-Propanol Log Kow

Überarbeitungsgrund: 3.2; 9; 12; 15

Bemerkung

Methode

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Temperatur

25 °C

Wertbestimmung

Ansatz

"Beweiskraft der Daten"-

Überarbeitungsnummer: 0300 Produktnummer: 51293 21/27

Wert

0.05

 $\underline{\text{Titandioxid; [in Pulverform mit mindestens 1 \% Partikel mit aerodynamischem Durchmesser} \leq 10 \ \mu\text{m}]}$

Log Kow

Methode	Bemerkung	Wert	Temperatur	Wertbestimmung
	Keine Daten vorhanden			

Schlussfolgerung

Enthält bioakkumulierbare Komponente(n)

12.4. Mobilität im Boden

<u>Aceton</u>

(log) Koc

Parameter	Methode	Wert	Wertbestimmung
log Koc	SRC PCKOCWIN v2.0	0.374 - 0.988	Berechnungswert

n-Butylacetat

(log)	NOC		
Da	ramatar		

Parameter	Methode	Wert	Wertbestimmung
log Koc	SRC PCKOCWIN v2.0	1.268 - 1.844	Berechnungswert

2-Methoxy-1-methylethylacetat

(log) Koc

Parameter	Methode	Wert	Wertbestimmung
log Koc	SRC PCKOCWIN v2.0	0.602 - 1.079	Berechnungswert

Prozentverteilung

0						
Methode	Bruchteil Luft	Bruchteil Biota	Bruchteil	Bruchteil Boden	Bruchteil Wasser	Wertbestimmung
			Sediment			
Mackay Level III	10.22 %	0 %	0.02 %	0.03 %	89.73 %	Berechnungswert

Butan-1-ol

(log) Koc

Parameter	Methode	Wert	Wertbestimmung
log Koc	ISBC DCKCCW/INLV2 ()	0.54	Berechnungswert

Schlussfolgerung

Enthält Bestandteil(e) mit Potenzial für Mobilität im Boden

12.5. Ergebnisse der PBT- und vPvB-Beurteilung

Enthält keine Bestandteile, die die PBT- und/oder vPvB-Kriterien in Anhang XIII der Verordnung (EG) Nr. 1907/2006 erfüllen..

12.6. Endokrinschädliche Eigenschaften

Kein Hinweis auf endokrinschädliche Eigenschaften

12.7. Andere schädliche Wirkungen

<u>NOVAFILLER</u>

Treibhausgase

Keiner der bekannten Komponenten ist in der Liste der fluorierten Treibhausgase (Verordnung (EU) Nr. 517/2014) enthalten.

Ozonabbaupotential (ODP)

Nicht als gefährlich für die Ozonschicht eingestuft (Verordnung (EG) Nr. 1005/2009)

Grundwasser

Grundwassergefährdend

Aceton

Grundwasser

Grundwassergefährdend

n-Butylacetat

Grundwasser

Grundwassergefährdend

2-Methoxy-1-methylethylacetat

Grundwasser

Grundwassergefährdend

Butan-1-ol

Grundwasser

Grundwassergefährdend

<u>Trizinkbis(orthophosphat)</u>

Grundwasser

Grundwassergefährdend

2-Propanol

Grundwasser

Grundwassergefährdend

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08

Datum der Überarbeitung: 2020-11-25

 Überarbeitungsnummer: 0300
 Produktnummer: 51293
 22 / 27

ABSCHNITT 13: Hinweise zur Entsorgung

Die in diesem Abschnitt enthaltenen Informationen sind eine allgemeine Beschreibung. Wenn anwendbar und vorhanden, werden die Expositionsszenarien in den Anhang aufgenommen. Sie müssen immer zum Thema gehörende Expositionsszenarien gebrauchen, welche ihren identifizierten Verwendungen entsprechen.

13.1. Verfahren der Abfallbehandlung

13.1.1 Abfallvorschriften

Europäische Union

Gefährlicher Abfall nach Richtlinie 2008/98/EG, wie geändert durch Verordnung (EU) Nr. 1357/2014 und Verordnung (EU) Nr. 2017/997. Abfallcode (Richtlinie 2008/98/EG, Entscheidung 2000/0532/EG).

08 01 11* (Abfälle aus HZVA und Entfernung von Farben und Lacken: Farb- und Lackabfälle, die organische Lösemittel oder andere gefährliche Stoffe enthalten). Abhängig von dem Industriezweig und dem Produktionsprozess können auch andere Abfallcodes anwendbar sein.

13.1.2 Entsorgungshinweise

Abfall entsorgen unter Beachtung der örtlichen und/oder nationalen Vorschriften. Gefährlicher Abfall soll nicht mit anderem Abfall vermischt werden. Unterschiedliche Arten von gefährlichem Abfall sollen nicht vermischt werden, wenn dies eine Verschmutzung nach sich ziehen kann oder zu Problemen bei der Weiterverarbeitung des Abfalls führen kann. Gefährlicher Abfall muss verantwortungsvoll gehandhabt werden. Alle Einrichtungen, die gefährlichen Abfall lagern, transportieren oder handhaben, müssen die notwendigen Maßnahmen ergreifen, um die Gefahr einer Verschmutzung oder Schädigung von Menschen oder Tieren zu vermeiden. Darf nicht mit dem Hausmüll deponiert werden. Spezifische Abfallverwertung. Nicht in die Kanalisation oder die Umwelt ableiten. An genehmigte Sondermüllsammelstelle abgeben.

13.1.3 Verpackung

Europäische Union

Abfallcode Behälter (Richtlinie 2008/98/EG).

15 01 10* (Verpackungen, die Rückstände gefährlicher Stoffe enthalten oder durch gefährliche Stoffe verunreinigt sind).

ABSCHNITT 14: Angaben zum Transport

4.1. UN-Nummer	
UN-Nummer	1950
4.2. Ordnungsgemäße UN-Versandbezeichnung	
Ordnungsgemäße Versandbezeichnung	Druckgaspackungen
4.3. Transportgefahrenklassen	
Nummer zur Kennzeichnung der Gefahr	
Klasse	2
Klassifizierungscode	5F
4.4. Verpackungsgruppe	
Verpackungsgruppe	
Gefahrzettel	2.1
4.5. Umweltgefahren	
Kennzeichen für umweltgefährdende Stoffe	nein
4. <u>6. Besondere Vorsichtsmaßnahmen für den Verwender</u>	
Sondervorschriften	190
Sondervorschriften	327
Sondervorschriften	344
Sondervorschriften	625
Begrenzte Mengen	Zusammengesetzte Verpackungen: bis zu 1 Liter je Innenverpackung flüssige Stoffe. Ein Versandstück darf nicht schwerer sein als 30 kg. (Bruttomasse)

Eisenbahn (RID)

······ (······)		
14.1. UN-Nummer		
UN-Nummer	1950	
14.2. Ordnungsgemäße UN-Versandbezeichnung		
Ordnungsgemäße Versandbezeichnung	Druckgaspackungen	
14.3. Transportgefahrenklassen		
Nummer zur Kennzeichnung der Gefahr	23	
Klasse	2	
Klassifizierungscode	5F	
14.4. Verpackungsgruppe		
Verpackungsgruppe		
Gefahrzettel	2.1	
14.5. Umweltgefahren		
Kennzeichen für umweltgefährdende Stoffe	nein	
14. 6. Besondere Vorsichtsmaßnahmen für den Verwender		
Sondervorschriften	190	
Sondervorschriften	327	
Sondervorschriften	344	
Sondervorschriften	625	

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 23 / 27

NC	VAFILLER
Begrenzte Mengen	Zusammengesetzte Verpackungen: bis zu 1 Liter je Innenverpackung fü flüssige Stoffe. Ein Versandstück darf nicht schwerer sein als 30 kg. (Bruttomasse)
innenwasserstraßen (ADN)	
14.1. UN-Nummer	
UN-Nummer	1950
14.2. Ordnungsgemäße UN-Versandbezeichnung	Druckgaspackungen
Ordnungsgemäße Versandbezeichnung 14.3. Transportgefahrenklassen	ргискдазраскипден
Klasse	2
Klassifizierungscode	5F
14.4. Verpackungsgruppe	
Verpackungsgruppe	
Gefahrzettel	2.1
14.5. <u>Umweltgefahren</u> Kennzeichen für umweltgefährdende Stoffe	nein
14.6. Besondere Vorsichtsmaßnahmen für den Verwender	nem
Sondervorschriften	190
Sondervorschriften	327
Sondervorschriften	344
Sondervorschriften	625
Begrenzte Mengen	Zusammengesetzte Verpackungen: bis zu 1 Liter je Innenverpackung fü flüssige Stoffe. Ein Versandstück darf nicht schwerer sein als 30 kg. (Bruttomasse)
ee (IMDG/IMSBC)	
14.1. UN-Nummer	
UN-Nummer	1950
14.2. Ordnungsgemäße UN-Versandbezeichnung	aerosols
Ordnungsgemäße Versandbezeichnung 14.3. Transportgefahrenklassen	aerosois
Klasse	2.1
14.4. Verpackungsgruppe	
Verpackungsgruppe	
Gefahrzettel	2.1
14.5. Umweltgefahren	
Marine pollutant	
Kennzeichen für umweltgefährdende Stoffe 14.6. Besondere Vorsichtsmaßnahmen für den Verwender	nein
Sondervorschriften	190
Sondervorschriften	277
Sondervorschriften	327
Sondervorschriften	344
Sondervorschriften	381
Sondervorschriften	63
Sondervorschriften	959
Begrenzte Mengen	Zusammengesetzte Verpackungen: bis zu 1 Liter je Innenverpackung fü flüssige Stoffe. Ein Versandstück darf nicht schwerer sein als 30 kg. (Bruttomasse)
14.7. Massengutbeförderung auf dem Seeweg gemäß IMO-Instrume	
Anhang II von MARPOL 73/78	Nicht anwendbar
ft (ICAO-TI/IATA-DGR) 14.1. UN-Nummer	
UN-Nummer	1950
14.2. Ordnungsgemäße UN-Versandbezeichnung	-
Ordnungsgemäße Versandbezeichnung	Aerosols, flammable
14.3. Transportgefahrenklassen	la .
Klasse	2.1
14.4. Verpackungsgruppe Verpackungsgruppe	
Gefahrzettel	2.1
14.5. Umweltgefahren	14.4
Kennzeichen für umweltgefährdende Stoffe	nein
14.6. Besondere Vorsichtsmaßnahmen für den Verwender	
Sondervorschriften	A145
Sondervorschriften	A167

Überarbeitungsgrund: 3.2; 9; 12; 15

Sondervorschriften

Sondervorschriften
Passagier- und Fracht-Flugzeug

Begrenzte Mengen: höchstzulässige Gesamtmenge je Verpackung

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 24 / 27

A167 A802

30 kg G

ABSCHNITT 15: Rechtsvorschriften

15.1. Vorschriften zu Sicherheit, Gesundheits- und Umweltschutz/spezifische Rechtsvorschriften für den Stoff oder das Gemisch

Europäische Gesetzgebung:

FOV-Gehalt Richtlinie 2010/75/EU

FOV-Gehalt	Bemerkung
79.58 %	
677.6 g/l	

Arbeitsplatz-Richtgrenzwerte (Richtlinie 98/24/EG, 2000/39/EG und 2009/161/EU)

2-Methoxy-1-methylethylacetat

Arbeitsstoff	Hautresorption
2-Methoxy-1-methylethylacetat	Haut

REACH Anhang XVII - Restriktion

Enthält Komponente(n), die den Beschränkungen in Anhang XVII der Verordnung (EG) Nr. 1907/2006 unterliegt/-en: Beschränkungen der Herstellung, des Inverkehrbringens und der Verwendung bestimmter gefährlicher Stoffe. Gemische und Erzeugnisse.

des Inverkehrbringens und de	er Verwendung bestimmter gefährlicher Sto	offe, Gemische und Erzeugnisse.
	Bezeichnung des Stoffes, der Stoffgruppen oder der Zubereitungen	Beschränkungsbedingungen
- Aceton - n-Butylacetat - 2-Methoxy-1-methylethylacetat - Butan-1-ol - 2-Propanol	Flüssige Stoffe oder Gemische, die Kriterien für eine der folgenden in Anhang I der Verordnung (EG) Nr. 1272/2008 dargelegten Gefahrenklassen oder -kategorien erfüllen: a) Gefahrenklassen 2.1 bis 2.4, 2.6 und 2.7, 2.8 Typen A und B, 2.9, 2.10, 2.12, 2.13 Kategorien 1 und 2, 2.14 Kategorien 1 und 2, 2.15 Typen A bis F; b) Gefahrenklassen 3.1 bis 3.6, 3.7 Beeinträchtigung der Sexualfunktion und Fruchtbarkeit sowie der Entwicklung, 3.8 ausgenommen narkotisierende Wirkungen, 3.9 und 3.10; c) Gefahrenklasse 4.1; d) Gefahrenklasse 5.1.	1. Dürfen nicht verwendet werden — in Dekorationsgegenständen, die zur Erzeugung von Licht- oder Farbeffekten (durch Phasenwechsel), z.B. in Stimmungslampen und Aschenbechern, bestimmt sind; — in Scherzspielen; — in Spielen für einen oder mehrere Teilnehmer oder in Erzeugnissen, die zur Verwendung als solche, auch zur Dekoration, bestimmt sind. 2. Erzeugnisse, die Absatz 1 nicht erfüllen, dürfen nicht in Verkehr gebracht werden. 3. Dürfen nicht in Verkehr gebracht werden, wenn sie einen Farbstoff außer aus steuerlichen Gründen und/oder ein Parfüm enthalten, sofern — sie als für die Abgabe an die breite Öffentlichkeit bestimmter Brennstoff in dekorativen Öllampen verwendet werden können und — ihre Aspiration als gefährlich eingestuft ist und sie mit H304 gekennzeichnet sind. 4. Für die Abgabe an die breite Öffentlichkeit bestimmte dekorative Öllampen dürfen nicht in Verkehr gebracht werden, es sei denn, sie erfüllen die vom Europäischen Komitee für Normung (CEN) verabschiedete europäische Norm für dekorative Öllampen (EN 14059). 5. Unbeschadet der Durchführung anderer Gemeinschaftsbestimmungen über die Einstufung, Verpackung und Kennzeichnung gefährlicher Stoffe und Gemische stellen die Lieferanten vor dem Inverkehrbringen sicher, dass folgende Anforderungen erfüllt sind: a) Mit H304 gekennzeichnete und für die Abgabe an die breite Öffentlichkeit bestimmte Lampenöle tragen gut sichtbar, leserlich und unverwischbar folgende Aufschriften: "Mit dieser Flüssigkeit gefüllte Lampen sind für Kinder unzugänglich aufzubewahren' sowie ab dem 1. Dezember 2010, Bereits ein kleiner Schluck Lampenöl — oder auch nur das Saugen an einem Lampendocht — kann zu einer lebensbedrohlichen Schädigung der Lunge führen'. b) Mit H304 gekennzeichnete und für die Abgabe an die breite Öffentlichkeit bestimmte flüssige Grillanzünder tragen ab dem 1. Dezember 2010 leserlich und unverwischbar folgende Aufschrift: "Bereits ein kleiner Schluck Grillanzünder kann zu einer lebensbedrohlichen Schädigung der Lunge führen'. c) Mit H304 g
· Aceton · n-Butylacetat · 2-Methoxy-1-methylethylacetat · Butan-1-ol · 2-Propanol	Stoffe, die als entzündbare Gase der Kategorien 1 oder 2, als entzündbare Flüssigkeiten der Kategorien 1, 2 oder 3, als entzündbare Feststoffe der Kategorie 1 oder 2, als Stoffe und Gemische, die bei Berührung mit Wasser entzündbare Gase entwickeln, der Kategorien 1, 2 oder 3, als selbstentzündliche (pyrophore) Flüssigkeiten der Kategorie 1 oder als selbstentzündliche (pyrophore) Feststoffe der Kategorie 1 eingestuft wurden, und zwar unabhängig davon, ob sie in Anhang VI Teil 3 dieser Verordnung aufgeführt sind.	1. Dürfen weder als Stoff noch als Gemisch in Aerosolpackungen verwendet werden, die dazu bestimmt sind, für Unterhaltungs- und Dekorationszwecke an die breite Öffentlichkeit abgegeben zu werden, wie z. B. für — Dekorationen mit metallischen Glanzeffekten, insbesondere für Festlichkeiten, — künstlichen Schnee und Reif, — unanständige Geräusche, — Luftschlangen, — Scherzexkremente, — Horntöne für Vergnügungen, — Schäume und Flocken zu Dekorationszwecken, — künstliche Spinnweben, — Stinkbomben. 2. Unbeschadet der Anwendung sonstiger gemeinschaftlicher Vorschriften auf dem Gebiet der Einstufung, Verpackung und Etikettierung von Stoffen muss der Lieferant vor dem Inverkehrbringen gewährleisten, dass die Verpackung der oben genannten

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

 Überarbeitungsnummer: 0300
 Produktnummer: 51293
 25 / 27

Aerosolpackungen gut sichtbar, leserlich und unverwischbar mit folgender Aufschrift
versehen ist:
,Nur für gewerbliche Anwender'.
3. Abweichend davon gelten die Absätze 1 und 2 nicht für die in Artikel 8 Absatz 1 Buchstabe
a der Richtlinie 75/324/EWG des Rates genannten Aerosolpackungen.
4. Die in Absatz 1 und 2 genannten Aerosolpackungen dürfen nur in Verkehr gebracht
werden, wenn sie den dort aufgeführten Anforderungen entsprechen.

Nationale Gesetzgebung Belgien NOVAFILLER

Keine Daten vorhanden

 $\underline{\hbox{2-Methoxy-1-methylethylacetat}}$

Hautresorption Butan-1-ol	Acétate de 2-(1-méthoxy)propyle; D; La mention "D" signifie que la résorption de l'agent, via la peau, les muqueuses ou les yeux, constitue une partie importante de l'exposition totale. Cette résorption peut se faire tant par contact direct que par présence de l'agent dans l'air.
Hautresorption	Alcool n-butylique; D; La mention "D" signifie que la résorption de l'agent, via la peau, les muqueuses ou les yeux, constitue une partie importante de l'exposition totale. Cette résorption peut se faire tant par contact direct que par présence de l'agent dans l'air.

Nationale Gesetzgebung Die Niederlande NOVAFILLER

	Waterbezwaarlijkheid	Z (2); Algemene Beoordelingsmethodiek (ABM)	
Τi	Titandioxid; [in Pulverform mit mindestens 1 % Partikel mit aerodynamischem Durchmesser ≤ 10 μm]		
	SZW - Lijst van	Als kankerverwekkende stof ingedeeld in categorie 1A of 1B als bedoeld in bijlage I van de Verordening (EG) nr.	
	kankerverwekkende stoffen	1272/2008 van het Europees parlement en de Raad van 16 december 2008; In SZW-Liste krebserregender Stoffe	
		aufgenommen	

Nationale Gesetzgebung Frankreich NOVAFILLER

Keine Daten vorhanden

2-Methoxy-1-methylethylacetat

Risque de pénétration	Acétate de 2-méthoxy-1-méthyléthyle; PP
percutanée	

Nationale Gesetzgebung Deutschland

NΟ	/AF	111	FR

NOVAFILLER				
WGK	1; Verordnung über Anlagen zum Umgang mit wassergefährdenden Stoffen (AwSV) - 18. April 2017			
Aceton				
TA-Luft	5.2.5			
TRGS900 - Risiko der	Aceton; Y; Risiko der Fruchtschädigung braucht bei Einhaltung des Arbeitsplatzgrenzwertes und des biologischen			
Fruchtschädigung	Grenzwertes nicht befürchtet zu werden			
<u>n-Butylacetat</u>				
TA-Luft	5.2.5/I			
TRGS900 - Risiko der	n-Butylacetat; Y; Risiko der Fruchtschädigung braucht bei Einhaltung des Arbeitsplatzgrenzwertes und des biologischen			
Fruchtschädigung	Grenzwertes nicht befürchtet zu werden			
2-Methoxy-1-methylethylacetat				
TA-Luft	5.2.5			
TRGS900 - Risiko der	2-Methoxy-1-methylethylacetat; Y; Risiko der Fruchtschädigung braucht bei Einhaltung des Arbeitsplatzgrenzwertes und			
Fruchtschädigung	des biologischen Grenzwertes nicht befürchtet zu werden			
<u>Butan-1-ol</u>				
TA-Luft	5.2.5			
TRGS900 - Risiko der	Butan-1-ol; Y; Risiko der Fruchtschädigung braucht bei Einhaltung des Arbeitsplatzgrenzwertes und des biologischen			
Fruchtschädigung	Grenzwertes nicht befürchtet zu werden			
Trizinkbis(orthophosphat)				
TA-Luft	5.2.1			
2-Propanol				
TA-Luft	5.2.5			
TRGS900 - Risiko der	Propan-2-ol; Y; Risiko der Fruchtschädigung braucht bei Einhaltung des Arbeitsplatzgrenzwertes und des biologischen			
Fruchtschädigung	Grenzwertes nicht befürchtet zu werden			
<u>Titandioxid</u> ; [in Pulverform mit m	indestens 1 % Partikel mit aerodynamischem Durchmesser ≤ 10 μm]			
TA-Luft	5.2.1			
	•			

Nationale Gesetzgebung UK NOVAFILLER

Keine Daten vorhanden

 $\underline{\hbox{2-Methoxy-1-methylethylacetat}}$

	Skin absorption	1-Methoxypropyl acetate; Sk	
Bi	Butan-1-ol		
	Skin absorption	Butan-1-ol; Sk	

Sonstige relevante Daten NOVAFILLER

Keine Daten vorhanden

Überarbeitungsgrund: 3.2; 9; 12; 15 Datum der Erstellung: 2011-07-08 Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 26 / 27

<u>Aceton</u>		
TLV - Carcinogen	Acetone; A4	
2-Propanol		
IARC - Klassifizierung	3; Isopropanol	
TLV - Carcinogen	2-propanol; A4	
Titandioxid; [in Pulverform mit mindestens 1 % Partikel mit aerodynamischem Durchmesser ≤ 10 μm]		
IARC - Klassifizierung	2B; Titanium dioxide	
TLV - Carcinogen	Titanium dioxide; A4	

15.2. Stoffsicherheitsbeurteilung

Es wurde keine Stoffsicherheitsbeurteilung für das Gemisch durchgeführt.

ABSCHNITT 16: Sonstige Angaben

Vollständiger Wortlaut aller unter Punkt 3 aufgeführten H- und EUH-Sätze:

- H220 Extrem entzündbares Gas.
- H222 Extrem entzündbares Aerosol.
- H225 Flüssigkeit und Dampf leicht entzündbar.
- H226 Flüssigkeit und Dampf entzündbar.
- H229 Behälter steht unter Druck: Kann bei Erwärmung bersten.
- H280 Enthält Gas unter Druck; kann bei Erwärmung explodieren.
- H302 Gesundheitsschädlich bei Verschlucken.
- H315 Verursacht Hautreizungen.
- H318 Verursacht schwere Augenschäden.
- H319 Verursacht schwere Augenreizung.
- H335 Kann die Atemwege reizen.
- H336 Kann Schläfrigkeit und Benommenheit verursachen.
- H351 Kann vermutlich Krebs erzeugen bei Einatmen.
- H400 Sehr giftig für Wasserorganismen.
- H410 Sehr giftig für Wasserorganismen mit langfristiger Wirkung.
- H412 Schädlich für Wasserorganismen, mit langfristiger Wirkung.
- EUH066 Wiederholter Kontakt kann zu spröder oder rissiger Haut führen.
- EUH211 Achtung! Beim Sprühen können gefährliche lungengängige Tröpfchen entstehen. Aerosol oder Nebel nicht einatmen.

(*) SELBSTEINSTUFUNG VON BIG
ADI Acceptable daily intake

AOEL Acceptable operator exposure level

CLP (EU-GHS) Classification, labelling and packaging (Globally Harmonised System in Europa)

DMEL Derived Minimal Effect Level
DNEL Derived No Effect Level
EC50 Effect Concentration 50 %

ErC50 EC50 in terms of reduction of growth rate

LC50 Lethal Concentration 50 %

LD50 Lethal Dose 50 %

NOAEL No Observed Adverse Effect Level
NOEC No Observed Effect Concentration

OECD Organisation for Economic Co-operation and Development

PBT Persistent, Bioakkumulierbar & Toxisch
PNEC Predicted No Effect Concentration
STP Sludge Treatment Process

vPvB very Persistent & very Bioaccumulative

Alle in diesem Sicherheitsdatenblatt enthaltenen Informationen basieren auf den von BIG gelieferten Daten und Mustern. Die Angaben erfolgen nach bestem Wissen und Gewissen und entsprechen dem Kenntnisstand zum Zeitpunkt der Erstellung des Sicherheitsdatenblattes. Das Sicherheitsdatenblatt vermittelt lediglich Anleitungen, wie man die unter Punkt 1 aufgeführten Stoffe/Zubereitungen/Gemische sicher handhabt, verwendet, verbraucht, lagert, transportiert und entsorgt. Zu gegebener Zeit werden neue Sicherheitsdatenblätter erstellt, von denen ausschließlich die jeweils aktuellste Fassung verwendet werden darf. Sofern nicht ausdrücklich anderweitig im Sicherheitsdatenblatt angegeben, gelten die in ihm angegebenen Informationen nicht für die Stoffe/Zubereitungen/Gemische in einer reineren Form, als Mischung mit anderen Stoffen oder in anderer Verarbeitung. Das Sicherheitsdatenblatt spezifiziert nicht die Qualität der betreffenden Stoffe/Zubereitungen/Gemische. Die Einhaltung der im Sicherheitsdatenblatt enthaltenen Anweisungen entbindet den Verbraucher nicht von seiner Pflicht, alle Maßnahmen zu treffen, die der gesunde Menschenverstand sowie die Vorschriften und Empfehlungen diesbezüglich nahelegen oder die auf der Grundlage der konkreten Verwendungsbedingungen notwendig und/oder nützlich sind. BIG garantiert weder die Richtigkeit noch die Vollständigkeit der hier enthaltenen Informationen und kann nicht für etwaige Änderungen durch Dritte haftbar gemacht werden. Das vorliegende Sicherheitsdatenblatt ist ausschließlich für die Verwendung in der Europäischen Union, der Schweiz, Island, Norwegen und Liechtenstein bestimmt. Jede Verwendung außerhalb des Geltungsbereiches erfolgt auf eigene Gefahr. Die Verwendung des vorliegenden Sicherheitsdatenblattes unterliegt den in Ihrer BIG-Lizenzvereinbarung enthaltenen Lizenz- und Haftungsbeschränkungsbestimmungen oder – wenn diese nicht anzuwenden sind – den allgemeinen Bestimmungen von BIG. Alle mit diesem Sicherheitsdatenblatt verbundenen geistigen Eigentumsrechte sind Eigentum von BIG; die Verteilungs- und Reproduktionsrechte sind eingeschränkt. Einzelheiten entnehmen Sie bitte der genannten Vereinbarung bzw. den Bestimmungen.

Überarbeitungsgrund: 3.2; 9; 12; 15

Datum der Erstellung: 2011-07-08

Datum der Überarbeitung: 2020-11-25

Überarbeitungsnummer: 0300 Produktnummer: 51293 27 / 27